
Mixed emotions: Sensitivity to facial variance in a crowd of
faces

Jason Haberman # $
Department of Psychology, Rhodes College, Memphis,

TN, USA

Pegan Lee $
Department of Dermatopathology, University of

California, San Francisco, CA, USA

David Whitney # $
Department of Psychology, University of California,

Berkeley, CA, USA

The visual system automatically represents summary
information from crowds of faces, such as the average
expression. This is a useful heuristic insofar as it provides
critical information about the state of the world, not
simply information about the state of one individual.
However, the average alone is not sufficient for making
decisions about how to respond to a crowd. The variance
or heterogeneity of the crowd—the mixture of
emotions—conveys information about the reliability of
the average, essential for determining whether the
average can be trusted. Despite its importance, the
representation of variance within a crowd of faces has yet
to be examined. This is addressed here in three
experiments. In the first experiment, observers viewed a
sample set of faces that varied in emotion, and then
adjusted a subsequent set to match the variance of the
sample set. To isolate variance as the summary statistic of
interest, the average emotion of both sets was random.
Results suggested that observers had information
regarding crowd variance. The second experiment verified
that this was indeed a uniquely high-level phenomenon,
as observers were unable to derive the variance of an
inverted set of faces as precisely as an upright set of
faces. The third experiment replicated and extended the
first two experiments using method-of-constant-stimuli.
Together, these results show that the visual system is
sensitive to emergent information about the emotional
heterogeneity, or ambivalence, in crowds of faces.

Introduction

Humans frequently encounter groups or even crowds
of faces. In fact, encounters with groups of faces (seeing
more than one face) may be our typical or default

experience. Most research on face perception is on the
individuals (Maurer, Le Grand, & Mondloch, 2002).
However, crowds of faces convey critically important
social information. For example, a single fearful face
tells us something about the state of that individual; a
crowd full of fearful faces tells us something about the
state of the world (perhaps that we should run).
Crowds also convey salient, behaviorally relevant cues.
Indeed, when crowds direct their attention to an event,
observers are much more likely to share the crowd
attention (Milgram, Bickman, & Berkowitz, 1969).
Information at the crowd level may strongly influence
and guide our behavior. Because crowds convey such
important social information, it makes sense that
humans are exceedingly sensitive to the average
expression in crowds of faces (Haberman & Whitney,
2007). In fact, humans can perceive the average
emotional expression, gender, identity, gaze direction,
and ethnicity (de Fockert & Wolfenstein, 2009;
Haberman & Whitney, 2007, 2009; Leib, Fischer, Liu,
Whitney, & Robertson, 2013; Leib et al., 2012;
Neumann, Schweinberger, & Burton, 2013; Rhodes,
Neumann, Ewing, & Palermo, 2015; Sweeny &
Whitney, 2014).

Several studies have found that observers represent
the average expression or identity from a crowd, often
as precisely as they can recognize the expression of any
of the individuals (Haberman & Whitney, 2007, 2009).
This crowd expression perception operates over space
(e.g., a static crowd of faces) and time—observers are
sensitive to crowd expression and identity when faces
are presented in a temporal sequence, as happens when
we shift our gaze across a crowd, or when a single face
dynamically changes expression or speaks (Haberman,
Harp, & Whitney, 2009; Post, Haberman, Iwaki, &
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Whitney, 2012). Humans are therefore sensitive to the
summary statistical information in groups of faces—
groups of faces are represented quickly and efficiently
as an ensemble (for a review, see Alvarez, 2011;
Whitney, Haberman, & Sweeny, 2013). The advantages
of this are clear: averaging many local estimates
improves precision and accuracy in estimates of global
properties or textures (for example, ensemble motion,
texture, size; Albrecht & Scholl, 2010; Alvarez & Oliva,
2008; Ariely, 2001; Chong & Treisman, 2003, 2005;
Morgan & Glennerster, 1991; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001; Watamaniuk & Duchon,
1992). Ensemble face representation may be a kind of
facial texture coding, where the system can mitigate the
effect of local (individual face) noise by averaging over
the crowd (Leib et al., 2012). Further, as mentioned
previously, crowds of faces convey significant infor-
mation that is uniquely available at the level of the
crowd. Processing the emotional expression of a whole
crowd of people tells us something more significant,
more accurate, and more reliable about the state of the
world. Encoding ensemble faces (crowds) allows
humans to visually represent social cues at the level of
the group.

Although there have been some examinations of
sensitivity to set variance (e.g., Marchant, Simons, & de
Fockert, 2013; Solomon, 2010), to date, all of the work
on ensemble face perception has focused on the
sensitivity to summary statistical information about the
first central moment—the average expression, gender,
and identity (de Fockert & Wolfenstein, 2009; Haber-
man & Whitney, 2007; Sweeny, Grabowecky, Paller, &
Suzuki, 2009). However, if crowd characteristics are
represented by specialized mechanisms, one might
expect observers to be sensitive to other statistical
information in crowds; for example, the second central
moment—the variance—in the expression of the crowd.
By encoding the variance of expressions in a crowd, the
visual system could represent emergent information,
such as mixed emotions or ambivalence—characteris-
tics that are not necessarily conveyed by any individual
face, but emerge naturally at the level of crowds. Here,
we tested whether observers are sensitive to the
variance in crowd emotional expression.

Experiment 1

Method

Participants

Three individuals (two females, mean age ¼ 23.6
years) affiliated with the University of California, Davis
participated. Informed consent was obtained for all
volunteers, who were compensated for their time and

had normal or corrected-to-normal vision. All research
was approved by UC Davis’ Institutional Review
Board.

Stimuli

We created three sets of 50 faces by linearly
interpolating (Morph 2.5, 1998, Gryphon Software,
San Diego, CA) between two emotionally extreme faces
of the same person, taken from the Ekman gallery
(Ekman & Friesen, 1976). To create the range of
morphs, multiple facial features (e.g., corners of the
mouth, bridge of the nose, center of the eye, etc.) were
matched between the emotionally extreme faces. The
morphing software linearly interpolated between the
start and endpoints specified, creating 50 image files.
The stimulus sets ranged from happy to sad, sad to
angry, and angry to happy. The amalgam of 150 faces
formed the stimulus set, a virtual ‘‘circle’’ of emotions
that was functionally infinite (Figure 1A). Morphed
faces were nominally separated from one another by
emotional units (e.g., face two was one emotional unit
sadder than face one). The label ‘‘emotional unit’’ is
arbitrary, and we do not mean to imply that every
emotional unit corresponds to a categorically distinct
emotion. Although emotion representation is thought
to unfold nonlinearly in ‘‘emotion space’’ (Russell,
1980), this would not generate sensitivity to facial
variance in crowds, per se, especially at a local scale
between nearby facial expressions, where linearity can
be assumed. Face images were gray-scaled (98%
maximum Michelson contrast) and occupied 3.04 3
4.34 degrees of visual angle.

Sets of either four or 16 faces were presented on a 43
4 grid (Figure 1B) such that the central four spots
always contained faces. Having two set size conditions
allowed us to replicate results and confirm a common
prediction of ensemble processing—that performance is
relatively unaffected by the number of items in a set
(e.g., Ariely, 2001). As such, if variance discrimination
functions as other forms of ensemble processing, we
expect similar performance in both set size 4 and set
size 16. The 16 face sets subtended a total of 12.16 3
13.02 degrees of visual angle. The background relative
to the average face had a maximum Michelson contrast
of 29%. Each set was characterized by two parameters,
the mean (average expression) and the variance
(difference in expression between set members). Within
the set of four faces, there were four different
expressions, centered on a particular average (linearly
computed) and with a given variance (separation
between face expressions). The set of 16 faces was
identical to the four-face set, except that four instances
of each face were presented. Biased variance estimates
were used, making the variance levels between set sizes
4 and 16 identical.
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Procedure

Observers saw a ‘‘sample’’ set of four or 16 faces for
1000 ms, followed by a second ‘‘adjustment’’ set of
faces. The average expressions of the sample and
adjustment sets of faces were randomly determined and
independent from each other (e.g., the sample set might
be relatively happy and the adjustment set somewhat
sad). The variance, the parameter of interest, in the first
‘‘sample’’ set was fixed at one of eight possible values
(0, 2.5, 5, 11.25, 20, 80, 180, 320).1 The variance in the
second ‘‘adjustment’’ set was randomly assigned, and
observers were asked to adjust the variance of the set to
match the previously seen sample set by advancing the
mouse wheel up or down. The set variance had a range
that looped continuously—from homogeneous, the set
became more heterogeneous when the mouse wheel was
moved in either direction, until the most heterogeneous
set was presented, after which continued mouse wheel
movement in the same direction made the set became
more homogeneous (all faces within a set were altered a
fixed amount with every mouse wheel movement).
Because the adjustment looped back on itself, there
were no clearly detectable ‘‘edges’’ to the adjustment
(i.e., the mouse wheel could be moved infinitely up or
down without reaching an edge). The adjustment task

allowed observers to cycle through the variances
(Figure 2) and choose any of 17 degrees of set variance
that they thought matched the sample set. Observers
pressed the left mouse button to indicate their choice,
and the next trial began 500 ms later. Each run had 200
trials, and observers performed from four to six runs
(800 to 1,200 total trials).

The method-of-adjustment task allowed us to
measure an error distribution that reflects how far
observers were from the actual set variance on every
trial. Because the distribution is signed (no negative
variances), we calculated average error—the deviation
of the adjusted variance from the true sample set
variance—as an estimate of the observer’s sensitivity to
the set variance. Higher average error indicates poorer
sensitivity. We chose an adjustment because it provides
a broad picture of the full error distribution, and does
not require an assumption about the underlying
discrimination function.

Results and discussion

We measured explicit sensitivity to the variance
among facial expressions in groups of faces, asking

Figure 1. Example stimuli (A) and task (B) in Experiment 1. In the first experiment, a sample set of 16 (or four) faces was presented for

1 s. The average expression of the set was randomly selected on every trial. The faces could be identical (homogeneous expressions)

or could vary by one of eight amounts ranging from relatively homogeneous to highly variable. An adjustment set was then

presented, with a randomly determined average expression, and a randomly determined amount of variance among the faces. The

observer’s task was to adjust the variance of the set of faces to match the previously viewed sample set. The randomly chosen

average expression of the adjustment set did not change during the adjustment phase of the trial; the subject only had control over

the variance between expressions (from homogeneous to variable expressions).
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observers to adjust the variance in an array of faces to
match a previously seen sample set. Figure 2A and B
shows that observers were able to adjust the variance of
the set of facial expressions to match the previously
seen set, but only when the variance of the sample set
was small. That is, the two sets might have different
average expressions (e.g., happy and sad) but observers
were able to adjust the variance of the second set to
match the first set with relative precision as long as the
test set did not contain too much heterogeneity.

Figure 2 shows a clear effect of set variance on the
subjects’ abilities to match the variance in the set—
sample sets of faces with sufficiently high facial
expression variance are harder to match. Chance
performance was determined by simulating an observer
who simply guessed on each of 10,000 trials. Observers
appear to be guessing when the test set becomes too
heterogeneous (i.e., variance of 180 emotional units or
higher). Within-subject ANOVAs, with set size (4 vs.
16) and set variance (eight levels) as within subject
factors, confirmed a significant main effect of sample
set variance, F(7, 14) ¼ 53.6, p , 0.01). There was no
main effect of set size, and the interaction between
variance and set size was not significant (p . 0.5 in
both cases). Notably, although we used a linear fit to
characterize these data, it appears that performance
remains fairly similar from a homogeneous set (zero

variance) to a slightly heterogeneous one. This is
reminiscent of what has been found in other low-level
texture discrimination tasks (Dakin, Bex, Cass, & Watt,
2009; Morgan, Chubb, & Solomon, 2008).

To characterize the discriminability of sample set
variance, we fit a line to each set size condition, which
fits the data here as well (set size 4: r2¼ 0.93, set size 16:
r2 ¼ 0.89). Consistent with the ANOVA, there was no
significant difference (determined by bootstrapping the
parameter estimates) in the slopes between set size 16
and set size 4, which were essentially identical at 0.51,
suggesting that variance sensitivity was unaffected by
set size. We also explored the interesting possibility that
performance remains constant at low levels of hetero-
geneity. To examine this, we fit a two-phase linear
regression to the data (Hinkley, 1969). This model
captures texture discrimination functions well since it
estimates the ‘‘break point’’ between internal and
external noise (i.e., the intersection of the two lines;
Yeshurun & Rashal, 2010). Although the model fit the
data well (set size 4: r2 ¼ 0.97, set size 16: r2 ¼ 0.99),
given the additional parameters we cannot justify using
it over a linear model. Overall, these results demon-
strate that subjects were able to perceptually match the
variance of a set at low levels of heterogeneity,
independent of its mean expression, but that this ability
broke down at high levels of heterogeneity.

Figure 2. Experiment 1 results. (A) Error distribution for set sizes 4 and 16 at each variance condition, collapsed across observers.

Notice that as set variance increases, observer responses become increasingly uniform (i.e., random). (B) The abscissa shows the

variance in the sample set, where zero is a homogeneous set of identical faces. The ordinate shows the average deviation of the

response in the adjustment set compared to the sample set. These data are modeled by the best fitting line. Chance was determined

by 10,000 simulated trials in which random responses were selected. Higher numbers indicate poorer sensitivity. Note that for

visualization purposes the variances are shown on a log scale. Error bars are within subject SEM.
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Experiment 2

Experiment 1 demonstrated that observers are
sensitive to variance between expressions in a set of
faces. One concern is that observers might have used
low-level information such as brightness, orientation,
or other non-face specific cues to perform the
adjustment task. In the following experiment, we tested
for an inversion effect in the set variance sensitivity. If
observers used a low-level cue, independent of face
orientation, then we would expect the same degree of
sensitivity to sets of upright and inverted faces. In fact,
the experiment will show that observers are more
sensitive to variance in sets of upright than inverted
faces.

Method

The methods in Experiment 2 were nearly identical
to the first experiment, with the exceptions that the sets
of faces (both sample and adjustment sets) were
presented in upright or inverted orientations (Figure 3),
and that only a set size of 16 was used. Additionally,
random noise was added to each face to help control
for possible local contrast differences across the set.

Four observers participated in the experiment (three
females, mean age¼23 years). The method, design, and
task were identical to those in the first experiment.

Results and discussion

Figure 4 shows the results of the second experiment.
The precision with which observers matched the
variance between upright faces was similar to Exper-
iment 1. Observers were better at adjusting to sets with
lower expressive variance, and guessing increased as set
variance increased.

A 2 (orientation) 3 8 (set variance) ANOVA
confirmed a main significant effect of set variance on
discrimination thresholds, F(7, 21) ¼ 39.0, p , 0.01, a
main effect of inversion, F(1, 3)¼ 30.9, p¼ 0.01, and a
significant interaction, F(7, 21)¼ 6.9, p¼ 0.02. There is
a vertical shift in sensitivity to variance as a function of
inversion—higher discrimination thresholds for sets of
inverted faces. Slopes of the fitted lines were also
significantly different from one another, determined by
bootstrapping the slope estimates of each line 10,000
times (set size 4: slope¼0.40, r2¼0.94; set size 16: slope
¼ 0.20, r2¼ 0.66), p , 0.001. Therefore, whatever cues
present in the inverted faces are not sufficient to
account for the (better) peak sensitivity in the upright

Figure 3. Stimuli used in Experiment 2. Sample sets of upright or inverted faces were presented for 1 s, followed by a set of faces

subjects matched to the sample. The average expression in each set was random and independent on each trial.
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sets of faces. Individual subject analyses were per-
formed on each subject, and confirmed the pattern of
results was consistent within each observer.

The inversion effect was not driven entirely by the
lower levels of set variance. A follow-up 2 (orientation)
3 3 (three highest levels of variance) ANOVA also
revealed a main effect of orientation (M¼ 124 vs. M¼
146), F(1, 18)¼ 4.38, p¼ 0.05, suggesting that, even at
the more difficult-to-discriminate levels of variance,
observers were using variance information unique to
upright face processing.

Experiment 3

The first two experiments suggested that observers
are sensitive to variance between expressions in a set of
faces, as measured by an explicit matching task.
However, the data do not effectively rule out the
possibility that participants are making a binary choice
between homogeneous and heterogeneous. Namely,
observers may have reported all sets above a specific
variance threshold as heterogeneous, without neces-
sarily distinguishing among sets of higher variance. The
goal of Experiment 3 was to explicitly test whether

observers can discriminate among different levels of
variance. To examine this, we measured set variance
discrimination using a method-of-constant-stimuli,
two-interval forced choice (2IFC) task. If observers are
sensitive to expression variance in sets of faces, it
should be measurable and replicable using multiple
methods.

Method

The stimuli in Experiment 3 were identical to those
used in the first experiment, but the task differed. In
this method-of-constant-stimuli experiment, observers
viewed two sequential sets of faces. One of the sets,
randomly determined, served as a standard or pedestal
and had either 0 variance (homogeneous) or a variance
of 20 (run in a separate block). The other set had one of
seven amounts of variance (always greater than the
pedestal), randomly determined on each trial. The
variance levels of the sets for the 0 variance pedestal
condition were identical to Experiment 1, and the
average expression in every set was randomly generat-
ed. Therefore, in a single trial, a sequence of two sets
could have very different average expressions. Observ-
ers were required to pick the interval that contained

Figure 4. Experiment 2 results. (A) Error distributions (histograms) from the second experiment, for upright and inverted faces. The

graph formats are identical to those in Figure 2. (B) Discrimination versus set variance, for upright faces (gray triangles) and inverted

faces (black circles). The shapes of the discrimination functions are similar to those in Experiment 1 (Figure 2). There was lower

sensitivity to the inverted sets of faces, suggesting that the perception of facial variance is not mediated by low-level nonfacial

features. Error bars are within subject SEM.
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more expression variance (2IFC task). Three observers
from the Rhodes College community (two females,
average age: 26.7 years; IRB approved) completed 30
trials at each of the seven levels of variance for a total
of 210 trials. In the second condition (run in a separate
block), the same task was repeated, but one of the sets
had a fixed pedestal variance of 20 rather than 0. In this
condition, all nonpedestal sets had an expression
variance greater than 20 to measure the increment
threshold (and therefore contained different levels of
variance from the 0 variance pedestal condition). The
proportion of correct responses as a function of the
increment in variance between the two sets was plotted
and a Weibull function, defined in Psignifit 3 as

gðx;m; sÞ ¼ 2
logð2Þms

�
logðxÞ � logðmÞ

�
þ log

�
logð2Þ

�
,

was fit to the data (Fründ, Haenel, & Wichmann, 2011).
Parameter x indicates the midpoint (i.e., 75% thresh-
old) on the psychometric function, and parameter m
indicates the slope at the midpoint.

Results and discussion

Figure 5 shows the results of the third experiment.
Subjects were able to discriminate sets of faces that
differed in expression variance. The results confirm the
first two experiments and extend them. The 75%
discrimination thresholds were 45.9 and 60.3 for
pedestals with variance 0 and variance 20, respectively.
This roughly corresponds to a set containing faces
separated from one another by six more emotional
units than the pedestal set. The psychometric functions
reveal that subjects are clearly able to perceive and
discriminate the expression variance in crowds of faces.

General discussion

The experiments here demonstrated that observers
are sensitive to the variance—the mixture of emotion
per se—in crowd facial expression. The fact that
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Figure 5. Results of Experiment 3. Subjects performed a 2IFC experiment, discriminating the set of faces with higher variance (A).

Psychometric functions for three subjects in the 0 variance pedestal condition (A) and the 20 variance pedestal condition (B).
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observers are sensitive to the average expression,
identity, and gender in groups of faces (de Fockert &
Wolfenstein, 2009; Haberman & Whitney, 2007;
Sweeny et al., 2009) cannot explain the results here.
Likewise, the perception of variance in groups of faces
cannot be entirely explained by low-level cues such as
brightness or orientation, because Experiment 2 dem-
onstrated an inversion effect. The results revealed a
discrimination function in which sensitivity scales with
set variance.

Ruling out other cues

Observers demonstrate sensitivity to variance across
a number of low-level domains (Dakin, 1999; Morgan
et al., 2008; Solomon, 2010). Face inversion is often
used as a control to isolate face-specific processing (e.g.,
configural or holistic processing; Maurer et al., 2002;
McKone, Martini, & Nakayama, 2001; Yin, 1969). As
mentioned previously, the results cannot be explained
by low-level cues (e.g., orientation, brightness, etc.),
because inverting the faces reduced set variance
sensitivity significantly. Low-level cues could, in
principle, contribute to the perceived variance in sets of
upright (and especially inverted) faces. However, the
peak sensitivity achieved for upright faces cannot be
accounted for by the information extracted from
inverted faces. There must therefore be some degree of
sensitivity to variance in sets of upright expressions per
se.

The results cannot be explained by nonlinearities in
the representation of facial expressions around the
wheel of expressions. Although our stimulus set has not
been psychophysically linearized, any deviation from
perfectly linear psychophysical discriminability would
only introduce noise; if anything, this would reduce the
estimates of facial variance sensitivity.

A strategy in which observers sample just a single
item from the set (Myczek & Simons, 2008) is unlikely
to account for our results. Numerous studies have
already demonstrated that sampling is not the mech-
anism by which ensemble perception operates (e.g.,
Ariely, 2008; Corbett & Oriet, 2011; Fischer &
Whitney, 2011; Haberman & Whitney, 2010; Parkes et
al., 2001). In the case of sensitivity to variance, by
definition it must be derived from more than one face in
the set, making all better-than-chance performance
evidence for an ensemble representation.

Observers were unlikely to access the variance of a
set through indirect means, for example by first
deriving the average expression and comparing it to
the most extreme face. Haberman and Whitney
(2010) asked observers to find the most deviant (i.e.,
extreme) face in a set of emotionally varying faces.
Participants were at chance in locating the most

deviant face before the trial ended, suggesting that
the representation of any particular individual face
was relatively poor. The low-fidelity representation
of any given face makes a ‘‘compare and contrast’’
strategy, such as the one described previously,
improbable.

Finally, the results cannot be explained by a simple
insensitivity to the individual faces. One might argue
that if the individual faces in a set were indistinguish-
able, there would be no difference in sensitivity for
homogeneous and slightly heterogeneous sets (perfor-
mance would look artificially good simply because the
individual faces were indiscriminable). This cannot
explain the results because the range of expressions in
nonhomogenous sets was highly discriminable (i.e., the
extreme faces in each set could be easily distinguished;
Haberman & Whitney, 2009).

Why sensitivity to facial variance?

Human observers are exceedingly skilled at perceiv-
ing the average expression (e.g., average emotion, age,
gender, identity) in a group of faces. Why do humans
bother coding the facial information about the crowd,
in the first place? We judge average crowd expression
because it is just like any other ensemble summary
statistical percept—it provides more useful information
than the individual; it more accurately reflects the true
mood (or gender or race) of the individuals who
compose the group. Increasing the number of samples
increases the accuracy of the estimated crowd (Alvarez,
2011).

What is the value of sensitivity to facial variance?
One possibility is that it gives direct access to the
‘‘mixture’’ of emotions in a crowd—the ambivalence of
the crowd, for example. Moreover, as mentioned
earlier, focused versus wavering crowds can signal
important social information not available at the level
of any individual: A single angry or aggressive
expression in a crowd full of different benign expres-
sions is not surprising. Facing a homogeneous crowd of
angry expressions is much more poignant—and would
be useful to perceive. This is not simply a matter of
judging the average expression. Rather, the sensed
variance in the crowd can be used to modulate the
value placed on the ensemble estimate. Given the same
average expression, a more homogeneous group would
signal a much more reliable estimate of the group
expression or feeling. Coding expression variance in
groups of faces might also be important for searching
for outlier expressions. For example, being sensitive to
the variance in a set might modulate visual search for
deviant facial expressions (Puri, Morris, Haberman,
Fischer, & Whitney, 2010).
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Facial textures: A uniquely high-level texture
processing

An interesting characteristic of the data, especially in
Figure 2, is that there is a hint of a flat segment in the
error as a function of set variance. This could indicate
that discriminating variance in a set of faces is as easy
or easier when the set has a nonzero variance. Although
thresholds increased slightly in the variance 20 pedestal
condition relative to the variance 0 pedestal condition
(Experiment 3), this difference did not approach
significance, t(2)¼�1.0, p ¼ 0.42. This pattern of
variance sensitivity resembles the familiar threshold-
versus-contrast (TvC) curve, which has been found in
discrimination of several features including orientation
variance (Morgan et al., 2008), motion (Burr, 1980),
luminance contrast (Schofield & Georgeson, 1999;
Watt & Morgan, 1985), and blur (Watt & Morgan,
1985). This type of curve is sometimes interpreted as
reflecting the existence of specialized mechanisms (e.g.,
for encoding orientation variance; Morgan et al., 2008);
in our experiments, this flat portion of the function
might indicate specialized encoding of facial variance,
something worth investigating in the future.

As mentioned earlier, perceiving expression variance
in sets of faces may facilitate the perception of average
facial expression in groups of faces, something that has
clear benefits. Unfortunately, the visual system has
significant internal noise—there is noise or error in the
estimated facial expression in any given face (in
addition to the external noise in the image presented to
the observer). There are many levels in visual process-
ing at which noise may be introduced, which could
modulate our sensitivity to facial expressions. For
example, we are differentially sensitive to faces in
different parts of the visual field (Afraz & Cavanagh,
2009), something that could in part reflect noise.
Considering that all the encoded faces in a set will be
perturbed by some additional internal noise, we might
expect that a homogeneous set of faces should not look
homogeneous.

However, it is reasonable that we might not want to
attribute the visual system’s internal noise to the
outside world, and one method of dealing with this
would be to set a threshold for what counts as
‘‘variable’’ (Solomon, 2009). One possibility is that the
visual system has an estimate of its own internal noise.
Below a threshold, corresponding to the estimated
internal noise, everything may look ‘‘regular’’ or
homogeneous. It has been argued that this kind of
threshold can explain several low-level phenomenon
including blur (Burr & Morgan, 1997), contrast
(Schofield & Georgeson, 1999), and motion perception
(Murakami & Cavanagh, 1998). For example, we are
not sensitive to the incessant retinal motion produced
by jittering eye movements (which constantly happen);

this could be because our threshold for what counts as
moving is higher than the amplitude of the retinal
motion (Burr & Morgan, 1997; Murakami & Cava-
nagh, 1998). Although speculative at this point, a
similar principle may operate when coding and
perceiving crowds of faces; despite some degree of
inhomogeneity, crowds may appear homogeneous in
expression. Future studies are required to fully address
this possibility. In any case, our results show that
humans are sensitive to the variance between expres-
sions in sets of faces. The information used to perceive
variance in crowd expression is upright-face-specific
and could underlie our perception of the homogeneity
of crowds.

Keywords: ensemble perception, faces, emotion, het-
erogeneity
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Footnote

1 Variance was calculated based on the emotional
unit separation between set items in a biased fashion
(i.e., the sum of the squared deviations divided by n,
not n�1). So, if a set contained faces 1, 2, 4, 5 (note that
the mean is excluded from the set), the variance was
2.5.
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