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We frequently encounter groups of similar objects in our visual environment: a bed of flowers, a basket
of oranges, a crowd of people. How does the visual system process such redundancy? Research shows
that rather than code every element in a texture, the visual system favors a summary statistical
representation of all the elements. The authors demonstrate that although it may facilitate texture
perception, ensemble coding also occurs for faces—a level of processing well beyond that of textures.
Observers viewed sets of faces varying in emotionality (e.g., happy to sad) and assessed the mean
emotion of each set. Although observers retained little information about the individual set members,
they had a remarkably precise representation of the mean emotion. Observers continued to discriminate
the mean emotion accurately even when they viewed sets of 16 faces for 500 ms or less. Modeling
revealed that perceiving the average facial expression in groups of faces was not due to noisy
representation or noisy discrimination. These findings support the hypothesis that ensemble coding
occurs extremely fast at multiple levels of visual analysis.
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Our seamless interaction with our surroundings gives us the
impression that we have a complete and accurate representation of
the visual world. Well-controlled laboratory experiments, how-
ever, have revealed that the visual system samples only sparsely,
and it has limited attentional and short-term memory capacity
(Luck & Vogel, 1997; Potter, 1976; Rensink, O’Regan, & Clark,
1997; Scholl & Pylyshyn, 1999; Simons & Levin, 1998). What
gives us the impression that we have such a complete representa-
tion of the visual world? One possible contribution may lie in the
natural design of the environment—it is highly redundant. A field
of grass, for example, contains repeating and overlapping features.
Although we may be able to distinguish one blade of grass from
another, coding every blade of grass would be computationally
overwhelming and may serve little utility. Rather, what we tend to
perceive by default is the whole field, a single texture comprising
many blades of grass. This kind of ensemble coding reflects an
adaptive mechanism that allows for the efficient representation of
a large amount of information—so efficient that it has been sug-
gested that this process may be responsible for the “illusion of
completeness,” filling in gaps of a visual scene where detailed
representations are lacking (Chong & Treisman, 2003).

Ensemble coding, whereby summary statistics are derived from
a set of similar items, has been examined for low-level features
such as size (Ariely, 2001; Chong & Treisman, 2003, 2005) and
orientation (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001).
Ariely (2001), for example, demonstrated that observers precisely
extract the mean size from a set of dots varying in size while losing
the representation of the individual set constituents. The precision

of mean extraction is not significantly compromised by changing
the distribution of dot sizes within the set (Chong & Treisman,
2003), suggesting a robust and flexible averaging mechanism. In
orientation perception, Parkes, Lund, Angelucci, Solomon, and
Morgan (2001) showed that individuals perceive a mean orienta-
tion in a set of crowded Gabor patches presented in the periphery,
despite being unable to individuate the central target. Observers’
inability to correctly identify the orientation of the target is not due
to interference from the crowding flankers. Rather, observers’
responses reflect an implicit pooling of all the elements in the set.

Given the overwhelming influx of information, it is not entirely
surprising that the visual system employs an ensemble-coding
heuristic. Uniform patterns such as dots or lines possess minimal
amounts of variance, making it both easy and reasonable to use a
single statistic to represent the whole set. By favoring a single
summary statistic over a discrete representation for each set con-
stituent, the system dramatically reduces computational load. Such
ease of coding may explain why the dominant (and more relevant)
percept when viewing a surface is that of a single texture and not
a jumble of low-level features. In fact, ensemble coding may
actually drive texture perception (Cavanagh, 2001). This does not
mean, however, that ensemble coding operates only at midlevel
vision (beyond V1 but before higher level object representation;
Marr, 1982; Nakayama, He, & Shimojo, 1995). In a previous
study, we showed that observers precisely represented the mean
emotion of a set of emotionally varying faces—a level of process-
ing well beyond that of surface perception (Haberman & Whitney,
2007).

Our initial findings revealed that ensemble coding is precise, is
flexible, and occurs for high-level objects like faces. We now
further characterize the mechanisms driving ensemble coding. The
first two experiments demonstrate that this process occurs implic-
itly. Using a paradigm similar to Ariely’s (2001), we show that
observers unknowingly represent a set of faces using the mean
emotion despite unrelated task instructions and do so at short
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stimulus durations. Modeling confirms that performance cannot be
explained by observer discrimination ability and thus points to an
explicit averaging process. The third experiment replicates and
extends previous work, demonstrating the precision with which the
mean emotion of a set of faces may be represented. We show that
observers’ can discriminate a mean from an array of heterogeneous
faces as well as they can discriminate any two individual faces—a
surprising level of precision. Experiment 4 shows that despite a
precise mean representation of a set of faces, observers have
almost no persistent representation of the individual faces com-
posing that set. The final two experiments are control experiments
showing that this emotion averaging is indeed the result of the
high-level properties of face stimuli and does not simply operate
on low-level features. Observers are unable to extract a mean from
a set of inverted or scrambled faces as well as they can from
upright faces. These experiments converge to suggest that ensem-
ble coding is implicit and fast and occurs across multiple levels of
object complexity.

Experiment 1A

The first experiment tested observers’ knowledge of the indi-
vidual set members. Despite the instruction to attend to the indi-
vidual members of the set, we hypothesized that performance on
this task would reflect a bias to represent sets of faces with the
mean emotion.

Method

Participants. Four individuals (1 woman, 3 men; mean age �
25 years) affiliated with the University of California, Davis, par-
ticipated. Informed consent was obtained for all volunteers, who
were compensated for their time and had normal or corrected-to-
normal vision.

Stimuli. We generated a set of 50 faces by morphing (Morph
2.5; Gryphon Software, San Diego, CA) between two emotionally
extreme faces of the same person, taken from the Ekman gallery
(Ekman & Friesen, 1976). The emotional expression among the
faces ranged from happy to sad (or neutral to disgusted), with Face
1 being the happiest. Morphed faces were nominally separated
from one another by emotional units (e.g., Face 1 was one emo-
tional unit happier than Face 2). The larger the separation between
any two faces, the easier it should be to discriminate them (we
tested this in Experiment 1B).

To create the range of morphs, the starting points of several
features (e.g., the corner of the mouth, the bridge of the nose, the
center of the eye) on one face are matched to their corresponding
end points on the other face. For happy–sad stimuli, 75 points of
interest were specified. The program then linearly interpolated the
two original Ekman faces, creating 50 separate morphed images
(see Figure 1). All face images were gray-scaled (the average face
had a 98% maximum Michelson contrast) and occupied 3.04° �
4.34° of visual angle. The background relative to the average face
had a 29% maximum Michelson contrast.

We varied set size from among 4, 8, 12, and 16 items, deter-
mined randomly on each trial. The faces were presented on the
screen in a grid pattern in the following format: 2 row � 2 column
matrix for the set of 4 items, 2 � 4 matrix for the set of 8 items
(14.68° � 9.53°), 3 � 4 matrix for the set of 12 items (14.68° �

14.68°), and 4 � 4 matrix for the set of 16 items (14.68° �
19.77°). Each face was assigned to a random position in the matrix
at the start of every trial.

Procedure. On every trial there were four unique emotions
displayed in the set, each of which was separated by at least six
emotional units, a distance well above observers’ discrimination
thresholds (results discussed in Experiment 1B). In a set size of 8
there were two instances of each emotion, in a set size of 12 there
were three instances of each emotion, and in a set size of 16 there
were four instances of each emotion. The mean emotion of each
set was randomly selected at the start of every trial. Once the mean
was selected, the four unique emotions composing the set were
selected surrounding the mean: two happier and two sadder. The
two happier faces were three and nine units away from the mean,
as were the two sadder faces (see Figure 2). The mean changed on
every trial but was never a constituent of the set.

The set was displayed for 2,000 ms and was immediately
followed by a single test face (0 interstimulus interval), which
could be either a member or a nonmember of the preceding set.
Each nonmember test face was at least 3 units away from a
member face (see Figure 2). The full range of potential test faces
was from 15 units below the mean to 15 units above the mean.
Observers were instructed to indicate with a key press whether the
test face was a member of the preceding set (a yes–no task; see
Figure 2). The test face remained on the screen until a response
was received.

For each of the four possible set sizes, there were 11 possible
test faces (4 of which were members of the preceding set) and 5
trials for each of these test faces, for a total of 220 trials per run.
Observers performed four runs for 880 trials total.

Results and Discussion

Figure 3A depicts the percentage of “yes” responses for each
observer, collapsed across set size. A “yes” response indicates that
the observer thought that the test face was a member of the
previously presented set. The x-axis depicts separation of the test
face from the mean of the set in emotional units (i.e., the mean
changed from trial to trial, but this graph represents performance
collapsed across all means). For all 4 observers, the probability of
a “yes” response was substantially lower when the test face fell
near the edge or outside of the set range, demonstrating sensitivity

Figure 1. The spectrum of face morphs for both happy–sad and neutral–
disgusted emotions. There were 50 faces for each emotional range. Ob-
servers saw only happy–sad or neutral–disgusted stimuli during a given
experiment.
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to the emotional range of the set. More importantly, the probability
of responding “yes” increased as the test face approached the
emotional mean of the set even though the emotional mean was
never actually presented in the original set. Despite the instruction
to attend to the individual set members, their responses revealed a
bias to indicate the mean emotion of each set. This is consistent
with the findings of Ariely (2001), which demonstrated that ob-
servers unintentionally represented the average size of a set of
dots. Our results suggest that observers implicitly extracted the
mean of a set of faces on a trial-by-trial basis.

Observers did not act as ideal observers. An ideal observer’s
probability of “yes” responses would have produced a saw-toothed
function (perfect accuracy). Figure 3A clearly demonstrates that
this was not the case.

Experiment 1B

Is it possible that participants were simply noisy observers?
Specifically, could noise at the perceptual, decision, or response
stage produce something that looks like the data in Figure 3? To
test this, we ran multiple simulations in which we convolved the
expected performance of an ideal observer (i.e., a saw-toothed
function) with observer discrimination ability. If discrimination
ability determined performance on the yes–no set membership
task, the resulting convolution should resemble observer perfor-
mance. To create this convolution, however, we first had to deter-
mine each observer’s discrimination performance, nominally re-
ferred to as homogeneous discrimination.

Method

Procedure. Each trial consisted of two intervals: a set of four
identical faces simultaneously displayed for 2,000 ms in a grid
pattern (6.94° � 9.53°) immediately followed by a single test face

displayed in the center of the screen (see Figure 4A). The test face
remained on the screen until a response was received. The emo-
tionality of the set was randomly selected from the gallery of
morphed faces. The subsequent test face was happier or sadder
than the set by �1–6 emotional units. In a method of constant
stimuli two-alternative-forced-choice task (2AFC), observers were
asked to indicate with a key press whether the test face was happier
or sadder than the set of identical faces. Each run consisted of 20
trials at each of the six levels of separation for a total of 120 trials.
Observers performed eight runs over two testing sessions for a
total of 960 trials. Thus, 160 judgments were made at each of the
six levels of separation. A logistic psychometric function was fit to
the data with Psignifit toolbox version 2.5.6 from MATLAB (see
http://bootstrap-software.org/psignifit/). Confidence intervals were
derived through the bias-corrected accelerated bootstrap method
based on 5,000 simulations, also implemented by Psignifit (Wich-
mann & Hill, 2001a, 2001b).

We also derived threshold estimates for neutral– disgusted
morphs. Three observers (2 women, 1 man; mean age � 20.33
years) performed four runs of the same task described above using
the alternate emotional stimuli (see Figure 4B). The separation
between set emotion and test emotion was increased to �2–12
units, with increments of 2 units between test conditions.

Results and Discussion

For each observer, we identified 75% correct discrimination in
terms of units of emotional separation between set and test. Figure 5
shows the psychometric functions for all observers. Seventy-five
percent correct thresholds were comparable for all observers in the
happy–sad morph condition (KS: 5.3; FF: 3.8; JH: 2.6; DH: 4.4) as
well as in the neutral–disgusted morph condition (KS: 4.4; JSH:
7.4; AC: 5.8). The results here reveal the precision with which
observers could discriminate any two of the morphed faces (ho-
mogeneous discrimination ability). This information is critical for
our modeling procedures, described below.

Modeling procedure and results. To test whether discrimina-
tion performance could predict yes–no set membership perfor-
mance (i.e., simply because of observer noise), we convolved
performance of an ideal observer with both the poorest discrimi-
nator of happy–sad morphs (Observer KS; see Figure 5A) and the
most sensitive discriminator of happy–sad morphs (Observer JH;
see Figure 5A). If the convolutions for these 2 observers mimic
their yes–no set membership data, then performance on the task
may be attributed to observer noise. If, however, this convolution
does not replicate their yes–no set membership results, then per-
formance may be attributed to an implicit representation of the
mean emotion of each set.

As observer noise increases (i.e., discrimination ability is
worse), the expected performance (i.e., the convolution) on the
yes–no membership task should begin to look more like what we
observed in Figure 3A—a Gaussian-shaped response probability
distribution, albeit wider than observed data. As noise decreases,
the expected performance should begin to resemble a saw-toothed
function. Figure 6 shows KS’s and JH’s actual yes–no membership
data and the modeled data (the ideal observer convolved with each
observer’s psychometric homogeneous discrimination function
from Figure 5A).

Figure 2. Task design for Experiment 1A. Observers saw four unique
faces, selected on the basis of their emotional distance from the mean
emotion, for 2,000 ms. Set size varied among 4, 8, 12, and 16 items.
Observers had to indicate whether the test face was a member of the
previously displayed set. The test face could be any of the distances
indicated by the circles (numbers were not seen by participants).
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We fit Gaussian curves to both the modeled (convolved) data and
KS’s and JH’s observed yes–no membership data (see Figure 6). We
selected a Gaussian curve because the data looked roughly nor-
mally distributed, but this particular function is not critical for our
conclusions. Any symmetrical function with a central peak would
have adequately fit these data. The Gaussian equation was formal-
ized as

a � exp���(x � b)

c �2�,

where a is the amplitude, b is the phase, and c is the full width at
75% maximum (nominally referred to as width). The parameter of

most interest was the width of the Gaussian fit, as this parameter
reveals the precision of mean representation—the narrower the width,
the more precise the representation. We used a conservative ap-
proach and fixed the amplitude of each Gaussian curve to the
average amplitude of KS’s observed yes–no membership data (see
Figure 3A) and KS’s convolved data. With amplitude fixed, only
two parameters were free to vary: curve width and phase. Figure 6
clearly shows that the Gaussian curve fit to KS’s probability of
“yes” responses (Experiment 1A data, solid line) was substantially
narrower than the noisy observer model (dashed curve), suggesting
KS’s representation of the set mean was more precise than would
be predicted by KS’s discrimination ability. To statistically test the

Figure 3. Probability of making a “yes” response for each subject (A) collapsed across set size and (B) broken
down by set size. A “yes” response indicates that the observer believed the test face was a member of the
preceding set. Probability of making a “yes” response peaked when the test face corresponded to the mean
emotion of the set. (B) There were no systematic differences in probability of making a “yes” response as a
function of set size.
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difference between the width parameter estimates of the two
curves, we fixed the width parameter of KS’s convolved data to the
width of KS’s observed data and refit the Gaussian curve (now
with two freely varying parameters, amplitude and phase, and
fixed width). If there were a substantial decline in the goodness of
fit between the original convolved Gaussian curve and the two-
parameter Gaussian curve, then the two width parameters from the
observed and convolved curves would be considered significantly
different from one each other (i.e., one would be significantly
wider than the other). There was a statistically significant dif-
ference in the quality-of-fit between these two models, F(1,
8) � 31.01, p � .005, suggesting that KS’s face discrimination
ability (Experiment 1B) could not account for the observed
pattern of KS’s responses in the set membership experiment
(Experiment 1A).

Observer JH was the most precise discriminator of happy–sad
face expression (see Figure 5A). Convolving JH’s discrimination
function with an ideal observer reveals a pattern resembling a
saw-toothed function (triangles in Figure 6B). As opposed to KS’s
data, a Gaussian curve may not even be the appropriate function to
use, making parameter comparisons between convolved and ob-
served data moot. We therefore compared the quality-of-fit of a

Gaussian distribution (a three-parameter model) with the quality-
of-fit of a boxcar (a two-parameter model) distribution. A boxcar
distribution would suggest insensitivity to the mean, because prob-
ability of responding that a test face is a set member would not
vary as a function of distance from the mean. In this case, the less
complicated model (i.e., the boxcar model with two parameters) fit
the data better (sum of squares � 0.08 for boxcar vs. sum of
squares � 0.13 for Gaussian). Because the same is not true of JH’s
observed yes–no data (first panel in Figure 3A)—that is, a Gauss-
ian distribution describes the data better than a boxcar distribution,
F(1, 8) � 76.61, p � .0001—we can conclude that JH’s discrim-
ination ability (Experiment 1B) cannot account for JH’s pattern of
yes–no membership data (Experiment 1A).

By systematically varying the slope and threshold of simulated
psychometric discrimination functions (such as from Figure 5), a
family of hypothetical noisy observers was created. The convolu-
tion technique described above was iteratively applied to each of
the hypothetical noisy discrimination functions (see Figure 7). It is
interesting that no realistic level of modeled noise was able to
match the performance curve seen in the actual task. As the noise
increased, the curves tended to become flatter and wider. Although
the modeled noise still resembled Gaussian distributions, the pre-

Figure 4. Task design for Experiment 1B. (A) Observers saw four instances of a randomly selected face
displayed on the screen for 2,000 ms. This was immediately followed by a single test face. Observers had to
determine whether the set or the test face was happier. (B) Same task as in Figure 4A, except the stimuli were
neutral–disgusted morphs. Separations between set and test were doubled relative to the happy–sad condition.
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cision of predicted mean representation (as reflected by width) did
not approach the level of precision in the actual data. As the noise
decreased (i.e., became more like an ideal observer), the distribu-
tion became less like a Gaussian curve and more like a saw-
toothed function. However, the saw-toothed shape does not resem-
ble the membership data. As was the case for JH’s convolved data
(see Figure 6B), the saw-toothed function (see Figure 7, inverted
triangles) is not well modeled by a Gaussian curve—a boxcar
function is a better fit. Expressed in another way, the yes–no
membership data reveal a very narrow distribution of responses
centered at the average facial expression; to produce such a narrow
distribution of responses based solely on noisy discrimination

would have required a saw-toothed shaped yes–no distribution.
Clearly, this did not happen. Therefore, no level of noise in
discrimination ability, whether it was substantial (very poor dis-
criminator, or worse than Observer KS) or minimal (close to an
ideal observer, or better than Observer JH), could explain the
precision of the mean representation found in observers’ data.
These simulations suggest that the noisy observer hypothesis can-
not account for the yes–no membership data.

We also examined performance as a function of set size, de-
picted in Figure 3B. We should note that viewing four iterations of
4 emotionally varying faces (set size 16) is not the same as viewing
only 4 faces. Increasing the number of items effectively increases

Figure 5. Results of Experiment 1B. (A–B) Psychometric functions for all observers. (C) Seventy-five percent
thresholds for each observer in the happy–sad condition and the neutral–disgusted condition. (A–C) Error bars
are 95% confidence intervals derived from 5,000 bootstrap simulations (Wichmann & Hill, 2001a, 2001b). For
fitting purposes, we included a point at 0 separation between set and test (chance performance), which does not
appear in the graph.
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Figure 6. (A) Comparison of expected performance for KS on the yes–no membership task (happy–sad
stimuli) to KS’s actual performance. The triangles are KS’s discrimination performance (Experiment 1)
convolved with performance of an ideal observer in the yes–no membership task (noisy observer model);
this reflects expected performance on the yes–no membership task. The circles indicate KS’s actual
performance. The width of the Gaussian curve fit to the actual yes–no membership data reveals a greater
level of mean precision than expected on the basis of KS’s discrimination performance alone (narrower
fitted Gaussian curve). This suggests that KS’s relatively poor face discrimination ability (from Figure 5A)
cannot account for KS’s actual sensitivity to the mean emotion of a set of faces. (B) Comparison of expected
performance for JH on the yes–no membership task (happy–sad stimuli) to JH’s actual performance. The
triangles represent JH’s discrimination performance (see Figure 3A) convolved with performance of an
ideal observer in the yes–no membership task. A boxcar function approximates the simulated data better
than a Gaussian curve. However, JH’s actual yes–no membership data are better captured by a Gaussian
curve. Therefore, JH’s relatively precise face discrimination (see Figure 5A) cannot account for JH’s actual
sensitivity to the mean emotion of a set of faces.

724 HABERMAN AND WHITNEY



processing load. The greater the number of faces in a set (even if
there are duplicates), the greater the number of faces one must
track to obtain the same level of performance seen for set size of
4. That said, it is clear that there are no systematic differences in
the yes–no membership data as a function of set size, consistent
with the findings of Ariely (2001). Therefore, within at least the
range of 4–16 faces, set size does not appear to influence the
ability of observers to extract the mean of the set.

The fact that the membership data (e.g., Figures 3, 6, and 7)
followed a Gaussian rather than a saw-toothed distribution sug-
gests that observers had a poor representation of the individual
emotions present in the set of faces, and hints at the possibility that
individuals are implicitly extracting a mean representation of emo-
tion. This occurs rapidly and flexibly, as observers perceived a
different set mean on every trial and could do so even with 16
faces on the screen.

Experiment 2

The previous experiment demonstrated that individuals implic-
itly perceived a mean emotion in a set of heterogeneous faces.
Observers were exposed to the sets for 2,000 ms. To examine the
speed and time course of mean emotion perception, we repeated

the yes–no membership experiment and manipulated stimulus
duration.

Method

Participants. Five individuals (3 women, 2 men; mean age �
20.67 years) affiliated with the University of California, Davis,
participated in this experiment. Two of these observers did not
participate in the prior experiment. Observer KS viewed both
happy–sad morphs and neutral–disgusted morphs, Observer FF
viewed only happy–sad morphs, and Observers AC, TH, and JSH
viewed only neutral–disgusted morphs. Informed consent was
obtained for all volunteers, who were compensated for their time
and had normal or corrected-to-normal vision.

Procedure. Observers performed the same task as described in
Experiment 1 but were exposed to the sets for 2,000 ms (as
before), 500 ms, or 50 ms. We used a block design for stimulus
presentation, such that observers were tested at a single duration
for the entirety of a run. For this follow-up study, the 5 observers
ran three runs (660 trials) at each duration. Set size was evenly
divided between 4 and 16 faces, presented in random order.

Results and Discussion

As in Experiment 1A, we examined the proportion of “yes”
responses—an indication that the observer thought the test face
was a member of the preceding set. To quantify the effect of set
duration on mean representation, we fit a Gaussian curve to the
probability of “yes” responses for each condition, independently
for each observer (Figure 8A shows one representative observer).
As described above, curve fitting provides information regarding
the precision of observers’ mean extraction ability. For example, a
narrower curve and higher amplitude reflect greater precision.
Thus, we report full width at 75% maximum (as before), as well as
curve amplitude, as a function of stimulus duration (see Table 1).
Nearly all Gaussian fits were significant (as indicated by the
goodness-of-fit statistic, R2; see Table 1).

The width of the Gaussian curves should approach infinity as set
duration approaches zero. Similarly, the amplitude of the curves
must approach zero as set duration approaches zero (i.e., response
trends become a flat line). On the basis of these limits, we used a
power function, f(x) � (axb � c), to examine the trends in the
parameter estimates as a function of set duration. Figure 8B shows
the width and amplitude parameters of the Gaussian curve fits for
each observer as a function of set duration. As expected, with
decreasing presentation time, there was a significant increase in
Gaussian curve width, F(2, 10) � 4.47, p � .04, and a significant
decrease in curve amplitude, F(2, 10) � 5.33, p � .03. This
suggests that the precision of the mean emotion representation
depends upon set exposure time.

The data in Figure 8A demonstrate that curve width increases
and curve amplitude decreases with decreasing set duration. How-
ever, the quality of each Gaussian fit (see Table 1), reflected by the
R2 for each curve, does not substantially decline. The fact that a
Gaussian distribution represents these data well at all levels sug-
gests that observers still represented mean facial expression even
at 50 ms, albeit more coarsely. A trend of increasing width or
decreasing amplitude across set durations simply implies a reduc-
tion in the precision of the mean representation with decreasing set
duration, not a complete lack of mean representation.

Figure 7. A family of simulated data sets based on various levels of face
discrimination ability. Each curve was generated by convolving ideal
observer performance with some degree of discrimination performance
(starting with KS’s discrimination data in Figure 5A). The solid circles
represent KS’s actual yes–no membership performance. To generate the
family of models, noise was increased or decreased by parametrically
multiplying the x-axis of KS’s discrimination data (see Figure 3A) by one
of several different gain values. Increasing noise (making the simulated
observer a less precise face discriminator) increased curve width and
flattened its overall appearance (diamonds), whereas decreasing noise
(making the simulated observer a more precise face discriminator) created
a curve that looks more like that of an ideal observer (a saw-toothed
function; triangles). This simulation demonstrates that KS’s actual yes–no
membership performance (solid circles) cannot be generated through the
direct manipulation of discrimination noise. The legend shows 75% thresh-
olds (cf. Figure 5A) in order of increasing noise; the threshold of 5.3 (open
circles) was KS’s threshold discrimination from Figure 5A.
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To illustrate this principle more concretely, we examined the
one case in which an observer was unable to represent the mean
emotion at 50 ms set exposure. Unlike that of other observers,
a Gaussian curve does not adequately capture Observer JSH’s
performance at 50 ms (see Table 1). There may be an alternative
function that better represents his pattern of performance. If
JSH was simply unable to extract anything meaningful from the
set in such a short amount of time, a linear function (i.e., a flat
line) would fit JSH’s data better than a Gaussian curve. This
would suggest that JSH’s responses were essentially random, no
longer dependent upon the distance of the test face from the set
mean. We used Akaike’s information criterion (AIC) method
for comparing the likelihood of two models: Gaussian versus
linear. In this method of model comparison, a lower AIC
indicates a better model fit (Motulsky & Christopoulos, 2003).
The AIC value for one model by itself, however, is meaningless
without the AIC value for another comparison model. The
difference in AIC between two models is computed, and from
this an information ratio (IR) is derived, which reflects the
likelihood that one of the two models is correct. For Observer
JSH at 50 ms, a flat line was more likely the correct model
(Difference in AIC � 14.37, IR � 26.23; the linear fit was
26.23 times more likely to be correct). This suggests that at 50
ms, JSH was unable to derive a mean from the set of faces.
However, this was not the case for the other 5 observers at the
same short duration, whose AICs indicated that a Gaussian curve
was likely the better fitting model (KS, happy–sad: Difference in
AIC � 15.68, IR � 2536.04; FF, happy–sad: Difference in AIC �
17.38, IR � 5952.20; KS, neutral–disgusted: Difference in AIC �
14.37, IR � 1318.46; AC, neutral– disgusted: Difference in
AIC � 5.46, IR � 15.33; TH, neutral–disgusted: Difference in
AIC � 14.30, IR � 1273.19). Therefore, all subjects but JSH were
able to extract a mean representation even at 50 ms, albeit a coarser
representation than in the 2,000-ms condition.

Although a Gaussian distribution fits the data better than a flat
line for 5 out of 6 observers, this does not rule out the possibility
there might be another function better fitting than a Gaussian
curve—perhaps one that does not exhibit a peak at the center of the
distribution. Examination of the curves from this experiment, as
well as those from Experiment 1A, reveals a precipitous drop in
the probability of responding “yes” when the test face falls beyond
the emotional range of the set. Is it possible that observers pos-
sessed an implicit knowledge of the range of the set rather than the
mean? If this were the case, a boxcar function should fit these data
better than a Gaussian distribution; the probability of “yes” re-
sponses would be minimized and equal for test faces beyond the
emotional range of the set, and the probability of “yes” responses
would be maximized and equal for those test faces within the
emotional range of the set (see Figure 9). To test this alternative,
we computed the IR by comparing the fit of a boxcar function to
the fit of a Gaussian distribution for each observer at the 50-ms set
duration. For 5 out of 6 observers, the Gaussian distribution was
more likely the better fit than the boxcar function (KS, happy–sad:
Difference in AIC � 5.22, IR � 13.62; FF, happy–sad: Difference in
AIC � 10.17, IR � 161.81; KS, neutral–disgusted: Difference in
AIC � 4.82, IR � 11.14; AC, neutral–disgusted: Difference
in AIC � 1.49, IR � 2.11; TH, neutral–disgusted: Difference in
AIC � 13.06, IR � 686.48). These results indicate that observers
were extracting more than just the emotional range of the set of faces.

We may conclude from these results that individuals perceive a
mean emotion (implicitly) across multiple set durations, although
this representation becomes noisier as set duration decreases. The
fact that the width of the fitted Gaussian curves increased (and
amplitude decreased) as set duration decreased implies only a
reduction in the overall precision of mean emotion representation,
and this is expected (i.e., one cannot represent anything when the
set duration is 0). Therefore, observers still extract a coarse rep-
resentation of the mean in a short amount of time.

Figure 8. Results from Experiment 2 (duration manipulation). (A) Gaussian fits for one representative observer
at three durations. The quality of the fit was comparable for each set duration (see Table 1), although there is
an effect of set duration (lower amplitude and greater curve width at shorter durations). (B–C) The general trend
of curve parameters width and amplitude as a function of duration. Each circle represents one observer’s
parameter estimates. A power function best captures these data. (B) As set duration decreased, curve width
increased. For set durations of 50 ms, observers had a coarser representation of the mean than at 2,000 ms. (C)
Similar results were seen for amplitude. As set duration decreased, curve amplitude decreased.
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Experiment 3

In the previous experiments, observers implicitly perceived the
mean emotion of a set of heterogeneous faces even though they
were instructed to attend to the individual constituents. We were
able to measure the precision of mean face representation by fitting
a Gaussian curve to the data at multiple stimulus durations. How-
ever, that method does not provide specific thresholds for mean
extraction ability. In the following experiment, we explicitly asked
observers whether a test face was happier or sadder (or more neutral
or more disgusted, depending on task condition) than the mean
emotion of the preceding set, thus deriving a concrete assessment
of observer precision. This replicates and extends the work of
Haberman and Whitney (2007).

Method

Participants. All observers had participated in some or all of
the previously described experiments. Four observers viewed
happy–sad morphs, 3 observers viewed neutral–disgusted morphs,
and 1 observer viewed both (in separate runs).

Procedure. We presented sets of 4 and 16 faces. The sequence
of events was nearly identical to that of Experiment 2, only the task
instructions changed. The range of potential test faces was �5,
�4, �2, or �1 unit happier or sadder (or �10, �8, �4, or �2
units for neutral–disgusted morphs) than the mean. There were
208 trials per run, with equal number of trials at each of the two set

sizes. Each observer performed at least three runs for a minimum
total of 624 trials (78 presentations of each of the eight possible
test face separations). Some observers performed four runs. The
mean emotion of the set of faces was randomly selected on every
trial.

For each observer, separate logistic functions were fit for ob-
servers’ homogeneous discrimination data (Experiment 1B) and
their mean discrimination data. These two curves were then sub-
jected to Monte Carlo simulations with the Psignifit toolbox
(Wichmann & Hill, 2001b), associated with MATLAB, to test the
null hypothesis that both curves came from the same underlying
distribution. Psignifit created a density plot containing 5,000 sim-
ulated values corresponding to slope and threshold differences
between our curves of interest. Significance regions were derived
based on this plot, and a p value calculated reflecting how aberrant
the actual observed difference was relative to the simulated dif-
ferences.

In a method of constant stimuli 2AFC task, observers indicated
with a button press whether the test face was happier or sadder (or
more neutral or more disgusted) than the mean emotion of the
previously presented set (see Figure 10).

Results and Discussion

Observers were explicitly asked to indicate whether a test face
was happier or sadder (or more neutral or more disgusted) than the
mean emotion of the previously displayed set of faces. Judgments
were made for set sizes of 4 and 16. As Figure 11 indicates,

Figure 9. Depiction of two possible models describing the membership
data for 50-ms duration (from Figure 8). The Gaussian distribution depicts
the hypothesis that observers’ “yes” and “no” responses are dependent
upon the proximity of the test face to the mean emotion of the set. The
boxcar alternative suggests that the range of the set influences “yes” and
“no” responses, where observers are most likely to reject a test face as a set
member when it falls beyond the emotional range of the set and most likely
to accept a test face as a set member when it falls within the emotional
range of the set. The boxcar was the better fitting model for only 1 observer
(JSH).

Table 1
Curve Parameters for Observers at Three Set Durations

Observer R2 Width Amplitude

50 ms

Happy–sad
KS .90�� 4.90 0.37
FF .91�� 4.85 0.67

Neutral–disgusted
KS .88�� 5.29 0.28
AC .74�� 6.76 0.42
JSH .22 12.21 0.35
TH .88�� 7.82 0.34

500 ms

Happy–sad
KS .92�� 3.91 0.38
FF .96�� 5.17 0.45

Neutral–disgusted
KS .90�� 3.84 0.33
AC .54� 8.18 0.43
JSH .82�� 6.62 0.42
TH .87�� 5.35 0.39

2,000 ms

Happy–sad
KS .97�� 3.66 0.39
FF .98�� 4.62 1.01

Neutral–disgusted
KS .90�� 3.55 0.73
AC .70�� 5.56 0.44
JSH .87�� 5.23 0.53
TH .92�� 4.12 0.53

� p � .05. �� p � .005.
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observers were remarkably precise in their assessment of the mean
emotion of a set (i.e., mean discrimination), performing just as
well as when they were asked to discriminate between two faces
(homogeneous discrimination, Experiment 1B). Just how good are
individuals at representing the mean emotion of a set? The Monte
Carlo simulations revealed that for 6 out of 7 observers, thresholds
between mean discrimination and regular discrimination did not
differ, suggesting that the two psychometric functions conceivably
came from the same underlying distribution. Observers were
equally good at representing a mean emotion from a set of heter-
ogeneous faces as they were at indicating which of two faces was
happier. This is particularly striking, especially when one consid-
ers that Experiment 1A indicated that observers were unable to
explicitly represent the individual set members. It appears that the
visual system favors a summary representation of a set of faces
over a representation of each set constituent.

Experiment 4A

Experiment 3 demonstrated that observers were able to extract a
precise representation of the mean emotion of a set of faces.
Further, Experiment 1A suggested that observers disregarded the
individual set members in favor of this mean representation. In the

following experiments we tested to what extent observers repre-
sented the individual members of the set.

Method

Participants. Three observers (2 women, 1 man; mean age �
23.33 years) affiliated with the University of California, Davis,
participated in this experiment.

Procedure. Observers were instructed to identify the location
in which a test face had appeared within the previously displayed
set. Set size varied from one to four items. The sets of faces were
created in exactly the same way as in Experiment 1A, which
ensured a minimum separation of six emotional units among set
members (a separation above discrimination threshold). Each face
was randomly assigned to one of four locations on the screen. Set
size of four looked as it did in Figure 10, whereas smaller set sizes
had one or more gaps. Here we used neutral–disgusted morphs,
although we have reported a different version of this task using
happy–sad morphs (Haberman & Whitney, 2007). Sets were pre-
sented for 2 s, followed by a single test face in the center of the
screen that remained until a response was received. The test face
was surrounded by four letters (A, B, C, and D) that corresponded
to the possible locations of the faces in the previous set. Observers
had to indicate where in the set the test face had appeared. Within
a given run there were 160 trials, and observers performed three
runs for a total of 480 trials.

Results and Discussion

As expected, location identification declined as a function of set
size (see Figure 12A). For set size of 4 items, the group average
was only 50% correct. Observers derived some information from
the set, but how much? For the purpose of comparison, we estimated
expected performance when a hypothetical observer explicitly re-
membered only one face from the set (solid line in Figure 12). Two
of the observers (JH and PL) were at or below this level of
performance, suggesting that they could remember only one face
(or less) from the sets, and this is consistent across all set sizes (see
Figure 12A). Observer AD performed at a level of accuracy that
would be expected if AD were able to remember between one and
two faces. This amount of information cannot explain the level of
precision on mean discrimination (see Figure 11). Despite explic-
itly remembering only one of the faces in the set, observers were
still able to precisely represent the mean emotion of an array of
faces containing up to 16 items.

Experiment 4B

In the previous task, observers were asked to identify the loca-
tion of a face within the set. It is possible that observers had a
high-fidelity representation of each set member but simply lost its
corresponding location information and therefore performed
poorly on the task. To test this, observers performed a 2AFC
judgment to identify which of two test faces was a member of the
previously viewed set.

Method

Participants. The same 3 observers from the previous exper-
iment participated.

Figure 10. Task design for Experiment 3. Observers had to indicate
whether the test face was happier or sadder (or more neutral or more
disgusted) than the mean emotion of set. The test face could be any of the
distances indicated by the circles (numbers were not seen by participants).
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Procedure. We used an unbiased, 2AFC paradigm to examine
how well observers represented the set members. We varied set
size from one to three faces and asked participants to identify
which of two subsequently presented test faces had appeared
in the set. The sets of faces were the same as in Experiment 4A
(with the exception that the largest set size was three faces, which
kept the minimum separation between any test and/or set faces at
six or more units). Sets were presented for 2 s (as before), followed
by two simultaneously presented test faces, one of which was a
target. The target was randomly selected from among the set items.
The lure was at least six units away from the test face and any

other member of the set (often this separation was larger). The
position (top or bottom) of the target face was randomized on
every trial. Observers were instructed to indicate with a key press
which of the two test faces was a member of the preceding set.
Within a given run there were 160 trials, and observers performed
three runs for a total of 480 trials.

Results and Discussion

Observers performed at a high level for set size of one (see
Figure 12B), as expected. Performance was not at 100%, however,

Figure 11. Results for Experiment 3. Figures 11A and 11B show individual psychometric functions for mean
discrimination for happy–sad morphs and neutral–disgusted morphs, respectively. Superimposed on each graph
is that observer’s discrimination performance (from Figure 5). Mean discrimination performance was as precise
as regular discrimination performance for nearly all observers. Figure 11C depicts the 75% thresholds for each
observer. Error bars in Figures 11A–11C are 95% confidence intervals derived from 5,000 bootstrap simulations
(Wichmann & Hill, 2001a, 2001b). For fitting purposes, we included a point at 0 separation between set and test
(chance performance), which does not appear in the graph.
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reflecting limitations in discrimination ability. Importantly, perfor-
mance declined with the introduction of just one additional face
(see Figure 12B), and this trend continued through a set size of
three faces. The solid line in Figure 12B indicates expected per-
formance if subjects were only able to code one face from the set.
As in Experiment 4A, observers remembered only one face (or
less) from the set. Explicitly remembering one face from the set
cannot explain the level of precision observed for mean discrim-
ination (see Figure 11). This suggests that individuals lacked
high-fidelity representations of the set members and not simply the
locations of the members. Despite this, observers had enough
coarse information about the set members to derive a precise
estimate of the mean emotion (Experiment 3).

When set size was greater than just one item, participants were
unable to code and retain explicit information about individual
identities of the set members. Numerous studies on visual working
memory have demonstrated the striking limitations in attentional
capacity (Luck & Vogel, 1997; Simons & Levin, 1998). Taken in
conjunction with research suggesting that searching for faces

within an array is a slow and difficult process (Brown, Huey, &
Findlay, 1997; Kuehn & Jolicœur, 1994; Nothdurft, 1993), the
poor performance seen in this experiment may not be entirely
surprising. What is surprising, however, is that despite poor per-
formance on set membership identification, there was still precise
mean discrimination of average facial expression (Experiment 3).

Experiments 5 and 6

It is widely accepted that whole upright faces, such as those used
in the experiments above, are processed in a configural or holistic
manner (Farah, Wilson, Drain, & Tanaka, 1998; Kanwisher,
McDermott, & Chun, 1997). Inverted and scrambled faces, in
contrast, are processed in a more part-based manner (Maurer, Le
Grand, & Mondloch, 2002; Moscovitch, Winocur, & Behrmann,
1997; Robbins & McKone, 2003). If the summary statistical rep-
resentation found above for sets of faces is specific to faces, and
not the low-level features within the faces, then we should find
more precise mean extraction for whole upright faces than for
inverted or scrambled faces. The purpose of Experiments 5 and 6
was to test this.

Method

Participants. Three observers (KS, TH, JH) from previous
experiments participated.

Stimuli. The same happy–sad and neutral–disgusted morphs
from prior experiments were used here, except that they were either
inverted (Experiment 5; see Figure 13A) or scrambled (Experiment 6;
see Figure 13B). For scrambling, we used MATLAB to divide each
of the original morphs into a 4 � 3 matrix of randomly arranged
squares. The same scrambling algorithm was applied to each
morph, such that the face pieces were rearranged in the same order
across faces.

Procedure. With the exception of the stimuli, the procedures
for Experiments 5 and 6 were identical to those used in the mean
discrimination experiment (Experiment 3). Set duration was fixed
at 500 ms. The recognition of inverted and scrambled faces is
thought to require feature-based strategies that differ from the
configural strategy associated with upright face processing (Farah
et al., 1998; Kanwisher et al., 1997; Maurer et al., 2002; Mosco-

Figure 13. Task design and stimuli for Experiments 5 and 6. Procedure
was identical to that of Experiment 3. Observers saw either (A) inverted or
(B) scrambled faces.

Figure 12. Results for Experiments 4A and 4B. The solid line represents
expected performance if observers could remember only one face from
each set. Actual performance, represented by the dotted lines, was at or
below this solid line for all but 1 of the observers (AD at set size of three
and four). Error bars are plus or minus one standard error of the mean.
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vitch et al., 1997; Robbins & McKone, 2003). If the mean face
extraction were based on configural or holistic facial information,
then we would expect that observers’ mean discrimination of
inverted and scrambled faces would be poorer than for upright
faces.

Results and Discussion

Figure 14 shows fitted psychometric curves for each observer on
mean discrimination tasks when viewing inverted or scrambled
stimuli compared with upright stimuli. Mean discrimination per-
formance for both inverted and scrambled faces suffered relative to
upright faces. The inverted and scrambled faces had the same feature
information available that upright faces had, and yet 5 of the 6
observers were significantly worse at extracting the mean emotion.
On the basis of 5,000 Monte Carlo simulations run with Psignifit
(described in Experiment 3), the only nonsignificant result had p �
.07 (Observer KS, upright vs. inverted; see Figure 14A). For all
other observers, the difference between the curves was significant
( p � .05). This supports the conclusion that the perception of
mean facial expression in sets of faces is distinct from low-level
feature averaging. The dissociation in mean extraction perfor-
mance (see Figure 14) suggests that the information used to
perceive mean upright facial expression was not available when
the faces were inverted or scrambled. Therefore, perceiving sets of
upright faces relies on a distinct and more precise facial represen-
tation. Evidently, ensemble coding occurs not only for low-level
features (dots and gratings) but also for high-level, complex
objects.

General Discussion

We have demonstrated that observers quickly recognize the
mean expression of a set of faces with remarkable precision,
despite lacking a representation of the set constituents. In fact,
observers were able to discriminate the mean emotion of a set at
least as well as they were able to discriminate the expression of
two faces (see Figure 11). The results cannot be explained simply
by observers’ perceptual or decision noise. Further, the summary
statistic was not simply the range of the set but approximated the
set mean. Feature-based processing strategies cannot account for
our findings, as observers were able to extract the mean emotion of
a set of upright faces with significantly more precision than they
were able to extract the mean emotion from a set of inverted or
fractured faces.

Ensemble Coding and Scene Perception

Statistical representation for low-level features makes
sense—an array of dots or a collection of gratings naturally com-
bines to create a single texture. Some speculate that statistical set
representation may serve, then, to promote texture perception
(Cavanagh, 2001). However, we show statistical representation for
face-specific processing, a level of processing well beyond that
required for dots, bars, or gratings. Although it is conceivable and
even probable that statistical set representation plays some role in
texture perception, this cannot be its only function given that it is
operating on high-level, complex objects. It is likely that set
representation serves a more general role in deriving gist from a

complex scene. This point is particularly compelling when one
considers the speed with which individuals perceived the statistical
representation—noisy mean extraction occurred in as little as 50
ms for sets of up to 16 faces. Previous studies that have reported
gist perception in extremely brief displays (Biederman, Glass, &
Stacy, 1973; Navon, 1977; Potter, 1976) may have tapped the set
representation mechanism found here. We speculate that the im-
pression we get of a complete and wholly accurate representation
of the visual world is not actually a “grand illusion” (Noe, Pessoa,
& Thompson, 2000). Rather, a great deal of condensed information
arrives in the form of summary statistics. This information, though
not necessarily high fidelity, is useful and may drive the impres-
sion that we “see” everything in our environment.

Groups of Faces Are Special

The fact that we perceive the mean emotion in a set of faces
may not seem intuitive at first. Although deriving an average
texture directly benefits surface perception, it is not clear
whether similar mechanisms are at work for average emotion
perception. For example, in our effort to derive a mean, do we
perceive a texture of faces the same way we perceive a texture
of Gabor patches? Despite this quandary, high-level ensemble
coding makes sense from an evolutionary perspective. A rapid
and precise assessment of a crowd of faces is useful for deter-
mining the intent of the mob. Summary statistical face process-
ing may therefore be a unique phenomenon, at a unique level of
processing. Taken with the body of work showing ensemble
coding for low-level objects such as dots (Ariely, 2001; Chong
& Treisman, 2003) and gratings (Parkes et al., 2001), we can
conclude that some form of averaging occurs across multiple
visual domains at different levels of analysis. Unlike perceiving
average size, orientation, and motion, perceiving average facial
expression is not mediated by low-level features, luminance
cues, or other nonconfigural cues (Experiments 5 and 6). Fur-
ther, the sensitivity to average facial expression is remarkably
precise: Subjects were able to discriminate mean facial expres-
sion at least as well as they were able to discriminate an
individual face. This degree of sensitivity is not found for
average size (Ariely, 2001), orientation (Parkes et al., 2001), or
other low-level features.

Parallel or Serial

Of significant interest is the exploration of whether mean ex-
traction is a parallel or serial process. Do observers automatically
extract the mean from large arrays of items, the same way they do
for global motion, global orientation, and some other texture
segmentation tasks (Landy & Graham, 2004; Movshon & New-
some, 1996; Newsome & Pare, 1988; Parkes et al., 2001; Regan,
2000; Watamaniuk & Duchon, 1992; Williams & Sekuler, 1984)?
This remains an ongoing debate, and currently there is support
for both sides. Chong and Treisman (2005) suggested that mean
extraction is automatic and parallel, because neither the number
of items nor cuing seemed to affect the accuracy of mean size
discrimination. Alvarez and Oliva (2008) reached a similar
conclusion, showing that summary statistical representation for
the location of a group of objects (average or centroid position)
occurred even when observers did not attend to the objects. Our
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data from Experiments 1 and 2 suggest that ensemble coding of
facial expression occurs implicitly, as observers unknowingly
possessed knowledge of the mean while disregarding the task
instructions to attend to the set members. However, demonstrat-
ing an implicit representation is not the same as demonstrating
automaticity. Even though observers derived a mean emotion in
brief stimulus displays, they showed a reduction in precision as
set exposure decreased. Therefore, we cannot make a strong
claim regarding the automaticity of ensemble coding, only that
it can occur implicitly.

In response to the suggestion that there is average size
perception (Ariely, 2001; Chong & Treisman, 2003), Myczek
and Simons (2008) have demonstrated that sparse sampling of
set items is sufficient for accurate discrimination of average
object size. Their model tested the precision with which ob-
servers could represent average size, assuming they track some
number of items in the set. In other words, the authors inves-
tigated whether existing models of directed attention could
explain ensemble coding performance, eliminating the need for
a separate averaging module that operates in parallel. Their

Figure 14. Psychometric curves for (A) upright mean discrimination versus inverted mean discrimination and
(B) upright mean discrimination versus scrambled mean discrimination. Upright mean discrimination was
significantly better ( p � .05) than either inverted or scrambled mean discrimination for 5 out of 6 observers.
Error bars are 95% confidence intervals derived from 5,000 bootstrap simulations (Wichmann & Hill, 2001a,
2001b). For fitting purposes, we included a point at 0 separation between set and test (chance performance),
which does not appear in the graph.
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model is theoretically capable of explaining much of the exist-
ing set representation data, at least when the stimuli are dots
(Ariely, 2001; Chong & Treisman, 2003). However, our data
depart from the average size data in one key respect: Compared
with baseline discrimination performance in the two respective
tasks, mean discrimination of emotion is more precise than
mean discrimination of size. Whereas average size perception is
worse than discrimination of two dots, average emotion per-
ception is at least as good as discrimination of two faces
(homogeneous discrimination, Experiment 1B). This distinction
would boost the number of items necessary for Myczek and
Simons’s model to achieve behavioral levels of performance in
our task.

Although Myczek and Simons’s (2008) model supports a
directed attention strategy for ensemble coding, it does not
preclude the existence of a parallel mechanism as well. For
example, a directed attentional mechanism cannot explain the
results of Parkes et al. (2001), where crowded central targets
(i.e., the targets were impossible to individuate because of the
surrounding flankers) influenced the perceived average orien-
tation of the entire set of Gabor patches. Because the crowded
Gabor patches could not be individuated, attention could not be
directed to those single items. This indicates that attention may
not be necessary to derive the mean orientation (i.e., a parallel
process may be at work). Thus, the jury is still out on whether
ensemble coding is primarily subserved by serial or parallel
processes. However, both mechanisms are capable of achieving
the same end—a summary statistical representation.

Conclusions

The experiments here demonstrate the existence of summary
statistical representations for groups of high-level objects: Observ-
ers perceived the mean facial expression in a group of heteroge-
neous faces. This reveals an efficient ensemble coding mechanism
that processes and represents large crowds but is distinct from the
mechanism responsible for low-level ensemble coding. The results
further demonstrate that ensemble coding operates at multiple
levels in the visual system.
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