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A critical function of the human visual system is to track
emotion accurately and continuously. However, visual
information about emotion fluctuates over time. Ideally,
the visual system should track these temporal
fluctuations—these “natural emotion statistics” of the
world—over time. This would balance the need to
detect changes in emotion with the need to maintain
the stability of visual scene representations. The visual
system could promote this goal through serial
dependence, which biases our perception of facial
expressions toward those seen in the recent past and
thus smooths our perception of the world. Here, we
quantified the natural emotion statistics in videos by
measuring the autocorrelations in emotional content
present in films and movies. The results showed that
observers’ perception of emotion was smoothed over
∼12 seconds or more, and this time-course closely
followed the temporal fluctuations in visual information
about emotion found in natural scenes. Moreover, the
temporal and feature tuning of the perceptual
smoothing was consistent with known properties of
serial dependence. Our findings suggest that serial
dependence is introduced in the perception of emotion
to match the natural autocorrelations that are observed
in the real world, an operation that could improve the
efficiency, sensitivity, and stability of emotion
perception.

Introduction

Emotions are dynamic and can change over the
course of seconds. As a result, emotion perception

must be fluid and adaptable to track and identify
changes in the emotional states of others during
social interactions. These temporal fluctuations in
emotion consist of natural statistics that we often
experience when perceiving emotion in the real world.
The dynamics of these natural statistics reflect the
smoothness with which emotions tend to change over
time (Cunningham, Dunfield, & Stillman, 2013; Hipson
&Mohammad, 2021; Kuppens, Allen, & Sheeber, 2010;
Kuppens, Oravecz, & Tuerlinckx, 2010; Kuppens &
Verduyn, 2017). Does the human visual system take
into account these temporal dynamics—the smoothness
of emotion changes—when recognizing displays of
affect and emotion?

In other domains, the visual system capitalizes on
the stability of visual scenes by introducing serial
dependencies in its representations of the world, which
bias perception towards previously seen information
(Cicchini, Mikellidou, & Burr, 2018; Fischer &Whitney,
2014). These serial dependencies cause currently
viewed stimuli to be perceived as being more similar
to previously seen stimuli than they actually are. They
effectively smooth perceptual experience and decisions
over time. Serial dependence has been reported in
the perception of face identity (Liberman, Fischer, &
Whitney, 2014), attractiveness (Kok, Taubert, Van der
Burg, Rhodes, & Alais, 2017; Taubert, Van der Burg,
Alais, & Burr, 2016; Xia, Leib, & Whitney, 2016), age
(Manassi & Whitney, 2022), gender (Taubert, Alais, &
Burr, 2016), and facial expressions (Liberman, Manassi,
& Whitney, 2018; Mei, Chen, & Dong, 2019; Taubert,
Alais, et al., 2016). While the prevalence of serial
dependence in perception has been well researched
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(Kiyonaga, Scimeca, Bliss, & Whitney, 2017), little is
known about whether serial dependence functions in
similar ways when observing dynamic natural scenes in
the real world.

A recent study byManassi andWhitney (2022) found
evidence for an active mechanism of serial dependence,
supporting the idea that our visual representation of
the world is continuously averaged over several seconds.
The authors found that observers perceived a movie of
a continuously changing face as unchanging, and that
age judgments of the face were attracted to previous
frames of the movie up to 15 seconds in the past.
The duration of this effect echoes the relatively long
time-course of serial dependence reported in a range of
other studies (Fischer &Whitney, 2014; Liberman et al.,
2014; Manassi, Liberman, Chaney, & Whitney, 2017;
Manassi, Liberman, Kosovicheva, Zhang, & Whitney,
2018; Manassi, Kristjánsson, & Whitney, 2019). One
may wonder why the visual system would allow visual
information from 10 seconds or more in the past to bias
perception of incoming visual information.

One idea is that, all else equal, serial dependence
incorporates visual information at a rate that matches
the natural autocorrelations observed in the world.
The autocorrelations that are present in our external
environment are an example of dynamic natural scene
statistics that we encounter in our visual experience
(Reinagel & Zador, 1999; Stansbury, Naselaris, &
Gallant, 2013). For example, when driving to work you
observe the road, other cars in front of you, traffic
signs, and much more. The information that you are
perceiving is autocorrelated because the visual input
currently arriving at your retina is similar to the visual
input that will arrive a second later. We experience these
same autocorrelations in emotion, a form of natural
emotion statistics, where we can perceive a person
smiling and infer that they are happy and predict the
future time-course of their emotion. Although emotions
can be downregulated to prevent overexpression of
a current emotion (Kuppens & Verduyn, 2017), this
change does not occur spontaneously but changes
smoothly over time, which results in an autocorrelation
in the natural statistics of emotion.

In this study, we aimed to investigate whether there
is any correspondence between the autocorrelation in
the natural emotion statistics found in the world and
the serial dependence in perceived emotion found in the
visual system. We measured the serial dependence of
perceived emotion using random frames of film clips,
documentaries, and home videos. Because observers
saw the movie frames in a random sequence, the
frames were unrelated to each other. Any sequential
dependence of ratings therefore reflects a smoothing
in perceptual decisions imposed by the visual system.
On the other hand, the autocorrelation present in the
natural emotion statistics in the movies was calculated
by reorganizing the ratings of all frames back into

their original movie-determined order. If active serial
dependence does integrate or smooth information in
a way that mimics the natural autocorrelations in the
world, then we should observe a similar temporal decay
in both the autocorrelations in the natural emotion
statistics and perceptual serial dependence functions. To
foreshadow our results, we found that perceptual serial
dependence mirrored the autocorrelation of the natural
emotion statistics in the world.

Methods

Subjects

A total of 175 (112 females, 62 males) observers
participated in this study ranging in age from 18 to 32
(M = 20.54, SD = 1.68 years). All participants provided
signed consent in accordance with the guidelines and
regulations of the UC Berkeley Institutional Review
Board and all experimental procedures were approved.
All participants were affiliates of UC Berkeley. We
excluded participants who completed less than 200
trials leaving a total of 155 participants for further
analysis.

Stimuli and procedure

The experiment was administered online on a
custom-made website designed for this experiment.
Thirty-four video clips (including Hollywood movies,
documentaries, and home videos) were gathered from
an online video-sharing website (YouTube; materials
available at https://osf.io/f9rxn/). The videos used in the
experiment were comprised of 21 Hollywood movies,
12 home videos, and two documentaries. Static frames
were then sampled from all videos at 2 Hz, which
resulted in a total of 4057 static frames. Frames from
different videos were shuffled and presented to each
observer in random order, such that visual stimuli
in consecutive trials were independent (Figure 1). In
each trial, observers used a two-dimensional (2D)
valence-arousal rating grid to report the valence and
arousal of the character in the static image. Valence
and arousal ratings ranged in values between −1 and
1, normalized to the size of the 2D bounding box
grid. Participants had to confirm their response by
clicking a “submit” button, which was located on the
left of the screen. This forced participants to reset
their mouse position after each trial. Participants were
allowed to progress through the trials at their own pace
and the stimulus frame was presented throughout the
duration of the trial. Once participants had confirmed
their rating, the next trial began, and a new frame
was presented immediately after. For trials where the
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Figure 1. Experiment design. (a) We sampled frames from 34 video clips at 2 Hz (500 ms) and overlaid a 2D valence-arousal grid on
each frame (4057 total static frames). (b) Static frames from videos were presented in a random order for each observer. Participants
were instructed to rate the valence and arousal of the target character, using a mouse click, and then confirmed their rating with a
button located to the left of the video frame. Participants completed as many trials as they could (self-paced) within 1.5 hours, for a
total of up to 1000 trials per observer.

target character was not in the scene, participants were
instructed to guess the emotion of the character based
on other information in the scene. Participants had 1.5
hours to complete as many trials as they could, up to a
total of 1000 trials (M = 816.83, SD = 268.02).

Data analysis

Autocorrelation analysis
Our goal was to compare the autocorrelations in the

natural emotion statistics found in movies clips with the
serial dependence of perceived emotion. To do that, we
first measured two types of autocorrelations. In one, we
measured autocorrelations in participants’ trial-by-trial
ratings, which we will refer to this as the “perceptual
autocorrelation,” because it reveals something about
the smoothness of perceptual judgments. In a second
type, we measured the autocorrelations of the natural
emotion statistics in the videos themselves. This was
possible because, although the video frames were
presented in a random order to observers, the video
frames could be reorganized into their original, proper,
movie sequence. Because the movie sequence was not
seen by observers, any autocorrelation in this sequence

reveals a smoothing in the movie per se, independent of
the observers. We will refer to this autocorrelation as the
“movie-based autocorrelation.” Autocorrelations were
computed on both valence and arousal dimensions.

To measure the perceptual autocorrelation, we first
removed trials in which the participants took longer
than 30 seconds to make a response; ∼10% of the
data was removed, in total. For removed trials, the
following trial took the place of the removed trial.
We then split each participant’s data into chunks of
30 trials, normalized the chunk by Z-scoring, and
computed the autocorrelation within each chunk. The
autocorrelation, in this case, is on the sequence of
ratings that the observer made. The average response
time across all participants was used to determine
the distance in time between the current trial and the
previous trial (mean RT = 3.96 s, SD = 2.9 s). To
compute average autocorrelations across chunks for
each participant, we first Fisher-Z transformed all
correlations, averaged the transformed values, and then
transformed them back to r values. We collapsed the
ratings across valence and arousal during averaging
because we were interested in the overall emotion rating
and not the dimensions themselves. This was done
by averaging the autocorrelations across observers
for valence and arousal. We normalized the empirical
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Figure 2. Single-subject example perceptual and movie-based rating and trial-by-trial subject error distribution. (a) Example of a single
subject’s perceptual rating as recorded trial-by-trial during the experiment and (b) the same subject’s movie-based ratings for a single
video with the frames re-organized in movie order (the order the frames would have appeared in the film). The star marker indicates
the same rating for the same single stimulus and was used as the starting point to compare these example sets of ratings. The ellipsis
indicates that trials continued past 50, but only 50 trials are shown here. Essentially, the full set of ratings in (a) and (b) (hundreds of
trials per observer) are identical but they are in a different order. (c) Observer angular response error (red distribution) across all trials
for all participants using each participant’s corresponding leave-one-out consensus and permuted angular response error (gray
distribution; 5000 iterations; K-S test, p < 0.01). Gray dashed lines indicate the possible range of error (circular distribution).

autocorrelations with the null distribution values by
subtracting the permuted null autocorrelations from
the empirical autocorrelations. For comparison, we
also calculated permuted autocorrelations by shuffling
the ratings in each chunk and calculated the difference
between each participant’s empirical autocorrelations
and the permuted (null distribution) autocorrelations.
We then bootstrapped the empirical and permuted
autocorrelations 10,000 times and computed the 95%
confidence intervals of the bootstrapped values.

To calculate the movie-based autocorrelation—the
autocorrelation in the natural emotion statistics found
in the videos themselves—we reorganized the sequence
of video frame ratings into the sequence as it was
intended in the movies. That is, instead of computing
autocorrelations based on the presentation order
(e.g., Figure 2a), we computed the autocorrelation of
the ratings for each sampled video by reorganizing the
ratings into the frame order appropriate for each video
(e.g., Figure 2b). We then computed the autocorrelation
for each video, in the same manner as described earlier.
To ensure we had the same amount of data across all
videos, we used the length of the shortest video as the
autocorrelation length, which was 52 trials.

We quantified the similarity between the
perceptual and movie-based autocorrelation by fitting
decaying exponential curves to the group averaged
autocorrelations. We then calculated the sum of squared
errors (SSE) between the exponential curve for the group
averaged perceptual and movie-based autocorrelation.

Specifically, we calculated the SSE between the group
averaged perceptual and movie-based exponentials for
the five points that corresponded to the time lag of 0, 4,
8, 12, and 16 seconds. The SSE quantifies the similarity
between the decaying exponential autocorrelation
functions. We compared the SSE between the group
averaged perceptual and movie-based exponential
curves with the SSE between the group averaged
permutation and movie-based exponentials. The group
averaged permutation exponential was calculated
by fitting a decaying exponential curve to the group
averaged permuted perceptual autocorrelations, which,
as described above, defined a null distribution. We
then bootstrapped the SSE, with 5000 iterations,
between exponential curves by randomly selecting
n number of subjects, with replacement, where n is
equal to the number of subjects in our data (n = 155).
We then recalculated the group averaged perceptual
and movie-based autocorrelations, refitted decaying
exponential curves to both autocorrelations and
then calculated the SSE between both exponentials
(see Figures 3c, 3d).

In a separate analysis, we investigated the similarity
between each observer’s own perceptual autocorrelation
and a version of their ownmovie-based autocorrelation.
Since observers could only complete a maximum
of 1000 trials, a single observer was not able to
see and rate all 4057 static frames. Consequently,
we calculated observers’ individual movie-based
autocorrelations by imputing the consensus rating
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Figure 3. Group autocorrelations for the perceptual and movie-based autocorrelation. (a) The movie-based natural autocorrelation in
the emotion expressed in movies. The blue line shows the empirical autocorrelation and the grey dashed line shows the permuted
autocorrelation. Shaded regions depict 95% confidence intervals. (b) The perceptual autocorrelation of participants’ emotion ratings.
The red line shows the empirical autocorrelation and the grey dashed line shows the permuted autocorrelation. Shaded regions
depict 95% confidence intervals. (c) Example exponential curve fit on the movie-based (blue line) and perceptual (red line)
autocorrelation coefficients. (d) To further compare the movie-based and perceptual autocorrelations, SSE was calculated on the
bootstrapped autocorrelation coefficients between the movie-based and perceptual autocorrelation (purple distribution) and the
movie-based and permuted autocorrelations (gray distribution). The difference was significant (p = 0.017, permuted null).

for frames that observers did not rate. This only
introduces noise, and it allows us to investigate the
similarity between each observer’s own movie-based
autocorrelation and their own specific perceptual
autocorrelation.

Serial dependence feature-tuning and temporal-tuning
analysis

To investigate any possible feature and temporal
tuning of the perceptual autocorrelations (from
ratings of frames presented in random order), we
measured the serial dependence in the observer’s
emotion ratings. We first converted the participant’s
ratings into polar angles, and then computed response
error on each trial, which was the distance in degrees
between the participant’s chosen response and
the consensus response. Since there is no absolute
correct answer for emotion ratings (Legree, 1995;
MacCann, Roberts, Matthews, & Zeidner, 2004;

Mayer, Caruso, & Salovey, 2000), the leave-one-out
consensus response was used as a proxy for the “correct”
response for each trial (Chen & Whitney, 2019). This
was calculated as the leave-one-out average response
for a given trial, where the current participant is left
out. We plotted the response bias for the current trial
as a function of the difference between the consensus
rating for the previous trial and the current trial (1-back
effect). Finally, we collapsed all of the participants’
data and created a super subject for the analysis. We
also computed the difference between the consensus
ratings on the current trial and those made two and
three trials in the past (2-back and 3-back effects,
respectively).

We fitted a derivative of von Mises curve on the data
using the following equation:

y = ak sin (x − μ) ek cos(x−μ)

2πI0 (k)
(1)
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where the y parameter is the response error for each
trial (subject response - consensus response), x is the
difference between the consensus rating for the previous
trial and the current trial, a is the amplitude modulation
parameter for the curve, k indicates the concentration
of the curve, and I0 is the modified Bessel function of
order 0. We then created a permuted null distribution
(5000 iterations) of the DoG curve by calculating the
response error between a subject’s response on any
given trial and the leave-one-out consensus response for
a random frame. We plotted this permuted response
error as a function of the difference between the
consensus rating in degrees for the previous trial and
the consensus rating in degrees for the current trial.

Because we had a total of 4057 frames, one
participant would not be able to provide ratings for all
the frames. Therefore we first used a “super-subject”
approach to investigate serial dependence, which
collapses the data of all participants. Previous serial
dependence studies using “super-subjects” have
used ∼11 participants in their study (Manassi et al.,
2019; Manassi et al., 2021). Because our experiment
consisted of 4057 static frames, we needed many more
participants than previous studies to have multiple
ratings for all frames collected from the movie clips.
In addition, because of the noise in emotion ratings
(Chen &Whitney, 2020) and the relatively modest effect
size in studies of serial dependence (Kondo, Murai,
& Whitney, 2022), we aimed to recruit a total of 175
participants in the study.

Results

Our goal was to investigate whether the smoothness
with which emotion is perceived in stimuli matches
the smoothness of natural emotion statistics found in
the world. To address this, we measured the similarity
between the autocorrelation in the perception of
emotion in frames presented in random order and the
autocorrelation in the natural emotion statistics found
in the frames of natural movies when reorganized into
proper movie order. Observers viewed shuffled static
frames from films and rated each frame using a 2D
valence-arousal grid. The ratings of the frames could be
organized in two principled ways. In one, the frames
were organized as experienced by the participant in the
experiment (e.g., abscissa of Figure 2a). In a second, the
frames were re-organized into the sequence of images
as intended in the original film from which the frames
were drawn (e.g., abscissa of Figure 2b). Figure 2a is
an example of a single participant’s ratings; it reflects
the sequence in which the observer experienced and
reported perceived emotion as they completed each
trial. We call this the “percept-based” sequence because
it reflects a sequence of perceptual reports. Figure 2b,

on the other hand, shows the same participant’s ratings
reorganized for a single film with the frames sequenced
into the order the frames would have appeared in
the film. We call this the “movie-based” sequence
because it reflects the sequence of the natural emotion
statistics depicted in the film. The star marker at the
first data point on the abscissa of Figures 2a and 2b
is identical and indicates the same rating for the same
image, such that “Trial 1” in the perceptual rating
is the same as “Frame 1” in the film-based rating
example. The difference in apparent variability between
Figures 2a and 2b is because only a very small subset of
the data is shown in the figures, and only the very first
data point is actually shared between the graphs in this
example.

To confirm that participants successfully completed
the task, we plotted the distribution of subject errors,
in polar angle, across all subjects by subtracting
each participant’s rating in each trial from their
corresponding leave-1-out consensus (Figure 2c). The
resulting error distribution appears relatively normally
distributed. A two-sample Kolmogorov-Smirnov test
for goodness of fit was run on the two distributions and
revealed that the two distributions were significantly
different (p < 0.01).

The percept-based sequence (Figure 2a) and the
movie-based sequence (Figure 2b) are two different time
series of the same data, and an autocorrelation can be
calculated separately for each of them. The movie-based
sequence results in a movie-based autocorrelation
function (Figure 3a), which reflects the statistics of
the information present in the film and is a proxy
metric for the natural emotion statistics of the world.
The perceptual-sequence from Figure 2a results in
a percept-based autocorrelation (Figure 3b), which
reflects the autocorrelations in perceived emotion of
frames presented in random order. A permuted null
distribution of autocorrelation functions was also
computed for each condition by shuffling the trials (gray
lines and ribbons). We then calculated the time constant
of when the empirical autocorrelation decayed to the
permuted null. For the movie-based autocorrelation, the
autocorrelation remained significant with lags up to 11
seconds (M = 10.845, 95% confidence interval [CI] = 9,
13) (Figure 3a). For the percept-based autocorrelation
in participant ratings, the autocorrelation remained
significant for up to 13 seconds (M = 12.9, 95% CI
= 12.3, 13.6) (Figure 3b). These results suggest that
the percept-based and movie-based autocorrelations
decayed toward the null distributions with fairly similar
time-courses.

We further investigated the similarity between
the movie-based and percept-based autocorrelations
by fitting decaying exponential curves to the
autocorrelations. To compare the movie-based
and percept-based autocorrelations, we used the
autocorrelation coefficient at timepoints 4, 8, 12, and 16
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seconds. We bootstrapped the autocorrelation for each
rating and calculated the SSE between the exponential
curve for the movie-based and the percept-based
autocorrelations (Figure 3c) with 5000 iterations. The
SSE quantifies the similarity between the two curves;
that is, the consistency between movie and percept-
based autocorrelation functions. We also computed
the SSE between the bootstrapped movie-based and
permuted null curves, as a baseline. Figure 3d shows
the distribution of SSE scores between the movie-based
and percept-based fitted exponential curves (purple)
compared to the distribution of SSE scores between
the movie-based and permuted null fitted exponential
curves (gray histogram; Figure 3d). The distribution of
SSE was significantly different (p = 0.017, permutation
test) indicating that the movie-based and percept-based
autocorrelations were more similar to each other than a
permuted null distribution would predict.

The similarity in the autocorrelation functions seems
clear, but how do we know that this is not coincidental?
If the autocorrelation in our perception of emotion
attempts to match the autocorrelation observed in
the natural emotion statistics found in the world,
then we should find that observers own perceptual
autocorrelations also match their own movie-based
autocorrelation. The perceptual autocorrelation for
each observer was based on the specific frames they
rated. To calculate the movie-based autocorrelation
for each observer, we imputed any missing frames in
the observers’ data using the consensus ratings, and
then reorganized the frames into the proper movie
sequence. We calculated the consensus rating for any
given frame by averaging the valence or arousal rating
across all observers who rated the frame. We then
compared each individual observer’s movie-based
autocorrelation to their own perceptual autocorrelation
to investigate if these two autocorrelations were similar
at the individual observer level. For each observer, we
fitted decaying exponential curves to their movie-based
and percept-based autocorrelations (Figure 4a). We
then bootstrapped (5000 iterations) their movie-based
and percept-based autocorrelations and calculated
the SSE between the exponential curves fitted on the
movie-based and perceptual autocorrelation for the five
points that corresponded to the time lag of 0, 4, 8, 12,
and 16 seconds (Figure 4b). Finally, we calculated the
average SSE for each observer’s movie-percept SSE and
their movie-permuted SSE and computed the difference
between these two values (Figure 4c). This quantifies
whether the movie-percept autocorrelation functions
were more similar than expected from a permuted null
distribution. The majority of individual observers had
movie-percept autocorrelation functions that were more
similar than expected by chance, (χ2[1, N = 155] =
11.93, p < 0.001; Figure 4c). These results suggest that
the movie-based and percept-based autocorrelations
were more similar to each other, across observers,

Figure 4. Individual autocorrelations for the perceptual and
movie-based autocorrelation. (a) Example exponential curve fit
on the movie-based (blue line), percept-based (red line), and
permuted (gray line) autocorrelation coefficients for a single
observer (883353 represents this observer’s identification
number). (b) Bootstrapped SSE calculation for a single
observer’s autocorrelation coefficients between the
movie-based and percept-based autocorrelation (purple
distribution) and the movie-based and permuted
autocorrelations (gray distribution). (c) Distribution showing
the difference between the mean SSE for the bootstrapped
movie-percept and movie-permuted SSE in Figure 4b for each
individual observer. Difference scores were significantly skewed
toward negative values, indicating that the movie-based and
percept-based autocorrelations were significantly similar to
each other compared to the permuted autocorrelation (χ2 =
11.93, p = 0.0006). Dark red line shows a fitted Cauchy
distribution.
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than a permuted null distribution would predict, and
it provides evidence that our group-averaged finding
(Figure 3d) is not coincidental and can be generalized
to individuals (Figure 4c).

The autocorrelation results for the natural movies
(Figure 3a) reflect information about natural emotion
statistics in the movies themselves. The rated images
were presented in a random, unrelated order. Any

cognitive or response biases that observers may have
brought to the task (including any kind of central
tendency effects, response biases, anchoring, and any
other kinds of perceptual, decisional, attentional, or
cognitive biases) would be reflected in the null permuted
distributions (Figure 3a, gray-shaded region).

There are, however, valid concerns about the
autocorrelation in the judgments themselves. For

Figure 5. Serial dependence in the perception of emotion and effect sizes. (a) The x-axis is the distance in degrees between sequential
stimuli, calculated as the difference between the consensus rating for the previous trial and the consensus rating for the current trial.
The y-axis is the judgment error, which is the difference between the subject response on the current trial and the leave-one-out
consensus. Individual blue dots are single trials. The red line depicts the running average across all observers. Shaded ribbons depict
95% confidence intervals. The solid black line shows the fitted derivative of von Mises. (b) shows the bootstrapped half amplitudes of
the derivative of von Mises fit for 1, 2, and 3 trials back. The half amplitudes for the permuted null and the 1-future trial are shown as
controls, for comparison. The error bars indicate bootstrapped 95% confidence intervals. (c) The same data from (a) are shown with a
fitted linear regression line (blue dashed line) from peak-to-trough (shaded region). The red line depicts the running average across all
observers. Shaded ribbons indicate 95% confidence intervals. (d) The bootstrapped regression line slopes for 1, 2, and 3 trials back
are shown. The bootstrapped regression line slopes for the permuted null and the 1-future are shown for comparison. The error bars
indicate bootstrapped 95% confidence intervals.
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example, how do we know that the percept-based
autocorrelation (Figure 3b) is actually due to cognitive
or perceptual processes and not just response
perseveration, hysteresis, lapsing, sluggish motor
control, or some other confound? In fact, there
are a range of artifacts that could cause seeming
autocorrelations in response data, and typically these
are seen as nuisances and controlled in various ways
(Hollingworth, 1910; Valdez, Ziefle, & Sedlmair, 2018).
Our hypothesis, however, is that the autocorrelations in
the judgments reflect, at least in part, the visual process
of serial dependence.

How can we be sure that there is serial dependence
in the perceptual judgments of observers? A
key characteristic of serial dependence is that is
feature-tuned: only sequential things that are similar
generate serial dependence (Cicchini, Mikellidou, &
Burr, 2017; Cicchini et al., 2018; Fischer & Whitney,
2014; Liberman et al., 2014; Magnussen & Greenlee,
1999; Manassi et al., 2019). In contrast, a response
hysteresis, sluggish motor response, perseveration on a
single response, or other confound would not display
any tuning to the sequential similarity between the
random and unpredictable stimuli. To evaluate whether
there is serial dependence, we measured the error of
observers’ responses in polar angle and calculated
serial dependence using the standard approach of
fitting a derivative of von Mises to the errors as a
function of the difference in sequential stimuli (Fischer
& Whitney, 2014). Response error γ was computed as
the distance in degrees between an observer’s response
and the leave-one-out consensus response (mean angle
across all other subjects). The response error was
compared to the difference between the consensus
for the previous stimulus and the consensus for the
current trial, in degrees. We pooled all subject’s data
into one super-subject and then fitted a derivative
of von Mises curve to the data. We quantified serial
dependence as the half amplitude of the von Mises
curve (Figure 5a). We bootstrapped the data 5000 times
and defined the mean bootstrapped half-amplitude
as the response pull towards the previous stimuli
(Figures 5a, 5b). We computed a permutation test
with the bootstrapped distributions for each n-back
trial. A strong positive half-amplitude was observed in
the 1-back trial, indicating that participants’ current
report was influenced by their judgment in the previous
trial (p < 0.001, permuted null) and the 2-back trial (p
< 0.001, permuted null). The half-amplitude for the
3-back trial was not significant (p = 0.0528, permuted
null). The average response time across participants
was 3.96 ± 2.9 seconds, suggesting that affect ratings
were attracted toward similar stimuli seen up to
12 seconds ago. Additionally, the emotion tuning
(Figure 5a) and temporal tuning (Figure 5b) were
similar to the time constant of 12 seconds found for the
movie-based autocorrelations (Figure 3a).

We further investigated the strength of the 1-back
serial dependence by conducting a linear regression
analysis on the response error as a function of the
difference between the consensus response in the current
trial and the previous trial. We fit a linear regression
model on the data from peak-to-trough (from −90
to +90 on the x-axis; Figure 5c) and performed a
permutation test with the bootstrapped distributions
for each n-back trial. The slope for the 1-back trial was
0.039 ± 0.006, and 0.018 ± 0.006 for the 2-back trial
which indicates that subjects had a ∼4% pull toward the
previous stimuli and ∼2% pull toward stimuli 2 trials
back (1-back, p < 0.001, 2-back, p = 0.0216, permuted
null) (Figure 5d). The slope for the 3-back trial was not
significant (p = 0.216, permuted null).

Discussion

The goal of the present study was to investigate
the serial dependence of emotion perception
using images from natural movies and to measure
whether the autocorrelations present in the natural
emotion statistics present in dynamic videos have
comparable autocorrelation functions to our
perceptual autocorrelations. The results revealed serial
dependencies in the perception of emotion in scenes
taken from natural movies (including Hollywood films,
documentaries, and home videos). These positive serial
dependencies suggest that perceived affective content is
biased, pulled toward stimuli presented up to 12 seconds
or more in the past (Figure 5a), consistent with prior
research (Alais, Xu, Wardle, & Taubert, 2021; Collins,
2021; Fischer & Whitney, 2014; Liberman et al., 2018;
Manassi et al., 2017; Manassi et al., 2018; Manassi &
Whitney, 2022; Mei et al., 2019; Palumbo, D’Ascenzo,
Quercia, & Tommasi, 2017; Van der Burg, Toet, A.,
Brouwer, A.-M., & Van Erp, 2021). Echoing previous
work, we also found that serial dependence in emotion
perception is tuned to the similarity in sequential
stimuli—only similar sequential emotions are perceived
to be serially dependent. A novel aspect of our study
is that we measured the autocorrelations in natural
movies, which reflects the natural emotion statistics
present in the movies. Interestingly, the perceptual
autocorrelation of emotion judgments followed a
similar time course and decayed at a similar rate as
the natural autocorrelation observed in the movies
themselves. Additionally, we found that the perceptual
autocorrelation and the serial dependence introduced
by our visual system in the emotion judgments were
similar to the autocorrelation in the natural emotion
statistics present in the movies. This effect was found
at both the group level (Figure 3d) and also at the
individual observer level (Figure 4c). Together, these
results suggest that the decay in the influence of
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previous stimuli on perceived emotion matches the
decay of the autocorrelation that is naturally present in
the real world.

Previous work on serial dependence in emotion is
limited due to the highly controlled and unnatural faces
used as stimuli in experiments (Liberman et al., 2018;
Liberman & Whitney, 2015; Mei et al., 2019; Taubert,
Alais, et al., 2016). These stimuli are physically similar
to each other, which leads to difficulties investigating
how serial dependence in emotion perception functions
when perceiving emotion in the real world, where faces
are less controlled and more varied. Additionally,
using artificial stimuli may conflate physical pixelwise
similarity with affective similarity in sequential stimuli,
thus further confounding the investigation of serial
dependence in emotion perception. We addressed this
limitation by investigating serial dependence with
independent stimuli, using frames from movie clips
which includes much of the information that is normally
encountered in the real world (including contextual
information, multiple people, body language, etc.).
In the present study, we found serial dependence in
the emotion ratings of target characters using shuffled
scenes from various movie clips which lacked physical
similarities, suggesting that serial dependence can
happen in emotion judgments even when physical or
image-based similarity is not consistent.

Much of the literature on serial dependence has only
employed static stimuli, leaving the question of how
serial dependence works in the real world unanswered.
However, a recent study using dynamic stimuli found
evidence for an active mechanism of serial dependence
when watching videos (Manassi & Whitney, 2022).
Here, we further investigated how serial dependence
might work in the real world by looking at the decay
of the autocorrelation between participants’ emotion
ratings of characters in a scene and the decay in the
natural autocorrelation observed in the emotion ratings
of the frames in a video. We found a similar time-course
between the autocorrelation in observers’ perceptual
ratings of emotion and in the autocorrelation of
the natural emotion statistics present in the movies
themselves. This suggests that the influence of previous
stimuli on the perception of emotion may mimic the
autocorrelations observed in natural emotions statistics
present in the real world.

There are several possible models that could account
for the results. One possible class of explanation for our
findings could be a relatively simple heuristic (Gardner,
2019; Kahneman, Slovic, Slovic, & Tversky, 1982). If
the autocorrelation in emotional stimuli in the world
is constant, then the brain might have developed,
learned, or evolved a similar autocorrelation in its
representation of emotion to save neural resources and
speed responses to emotional stimuli. Alternatively,
variations of Bayesian and efficient observer models
could be adapted to approximate the serial dependence

in emotion perception in a flexible way (Cicchini,
Anobile, & Burr, 2014; Cicchini et al., 2018; Cicchini
& Burr, 2018; Fritsche, Spaak, & de Lange, 2020;
Kalm & Norris, 2018). Even if the autocorrelations
in the world were not constant, there might be
individual differences (Kondo et al., 2022), because
the environmental statistics can change for specific
observers and because internal sources of uncertainty
and noise can vary among individuals and over time as
well. Our perception of emotion may even be influenced
by our predictions of the future, especially at short time
scales (Hogendoorn, 2022; Xia & Whitney, 2017).

Regardless of the best model, the influence of
serial dependence on the perception of the currently
perceived stimulus depends heavily on the distance in
time between the previous and current stimuli (Fischer
& Whitney, 2014; John-Saaltink, Kok, Lau, H. C., &
De Lange, 2016; Liberman et al., 2014). We found a
similar effect here (Figures 3, 5). Because emotional
expressions typically last between 0.5 and four seconds
(Ekman, 2004), the brain might continually average
emotional information when inferring the emotions
of an individual. This could explain why the serial
dependence in the 1-back trial, which was presented
four seconds in the past (on average) had twice as
much influence on the current trial than the 2-back
trial (Figure 5b). Additionally, averaging emotional
information in relatively short windows would prove
useful when inferring emotion in real-time as the
emotional state of others can change (Figure 3a).
Thus, observers must make quick perceptual inferences
of others and react appropriately. Indeed, serial
dependence has previously been shown to speed up
response times (Cicchini et al., 2018), which supports
the need for serial dependence in emotion perception.

One might argue that the autocorrelation in the
movie-based and percept-based ratings might not
signify serial dependence, but some other cognitive
or perceptual process. Thus, we further investigated
whether there is temporal and feature tuning of the
perceptual effect, because this is a hallmark of serial
dependence (Fischer & Whitney, 2014; Kiyonaga et
al., 2017; Manassi et al., 2018; Manassi et al., 2019;
Manassi et al., 2021; Manassi & Whitney, 2022). We
found observers’ emotion ratings were pulled toward
the emotion in previous trials up to 12 seconds in
the past (Figure 5). We also observed feature tuning,
which shows that participants’ ratings for the current
trial were influenced by the emotion of the previous
trial only if the sequential emotions were similar. This
finding supports previous research that has found only
similar sequential emotions to be serially dependent
(Palumbo et al., 2017; Van der Burg et al., 2021). The
result is also consistent with other studies that found
serial dependence in the affect rating of emotional
stimuli (Palumbo et al., 2017; Van der Burg et al., 2021).
Although many serial dependence studies use low-level
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stimuli in their investigation (Kiyonaga et al., 2017),
serial dependence has been found across many levels
beyond just perception, including decision making
(Abrahamyan, Silva, Dakin, Carandini, & Gardner,
2016; Braun, Urai, & Donner, 2018; Fritsche, Mostert,
& de Lange, 2017; Lueckmann, Macke, & Nienborg,
2018; Pascucci et al., 2019) and memory (Barbosa et al.,
2020; Kiyonaga et al., 2017). Thus it is not surprising
that we observe serial dependence for a high-level
cognitive process like emotion perception.

The direction of bias in the serial dependence of
emotion has been unclear, with some studies finding
positive serial dependencies for emotional expressions
(Collins, 2021; Liberman et al., 2018; Mei et al., 2019)
whereas another study found a negative aftereffect for
judgments of emotional expression but positive serial
dependence for face gender (Taubert, Alais, et al., 2016).
Interestingly, Taubert et al. (2016) concluded that the
direction (or time course) of serial dependence might
change depending on the permanence of the relevant
attribute; gender is relatively stable and emotion varies
over time. It might also change depending on individual
differences (Kondo et al., 2022). At first blush, our
results might seem at odds with those of Taubert, et
al. (2016) and consistent with those of Liberman et al.
(2018), Mei et al. (2019), Van der Burg et al. (2021),
and Collins (2021). However, our results are, in fact,
also consistent with Taubert’s suggestion that serial
dependence in perception might match the statistics
of the world. Serial dependence in any domain can
be flipped to a negative aftereffect with sufficient
adaptation duration or contrast, or sufficiently reduced
noise (Alais et al., 2017; Cicchini et al., 2017; Fischer
& Whitney, 2014; Manassi et al., 2018; Taubert, Alais,
et al., 2016), and this could happen in the case of
emotional expression, as well (Burton, Jeffery, Bonner,
& Rhodes, 2016; Saad & Silvanto, 2013; Sou & Xu,
2019; Taubert, Alais, et al., 2016). The important point
of Taubert et al. (2016) is supported by our findings:
the serial dependence of emotion perception seems to
match the actual autocorrelation statistics of expressed
emotion in the real world.

The neural mechanisms that generate serial
dependence in emotion perception remain a mystery,
but there are intriguing hints in the existing literature.
Serial dependence in emotion perception may be
caused by residual activation of the emotional brain
network, specifically the lateral prefrontal cortex (lPFC)
(Dalgleish, 2004; Lapate et al., 2017). Previous work by
Lapate et al. (2017) found that inhibition of the lPFC
with transcranial magnetic stimulation led to greater
bias in the evaluation of neutral faces from previously
seen emotional expressions (Lapate et al., 2017). Their
findings suggest that an emotional response does not
just disappear, but slowly decays over time, implying
that if serial dependence in emotion perception
is caused by “spill-over” of previously processed

stimuli, then we should expect to see a positive serial
dependence.

Although serial dependence has been found in affect
ratings of visual and auditory stimuli (Palumbo et al.,
2017; Van der Burg et al., 2021), the temporal tuning of
serial dependence in emotion perception has yet to be
thoroughly investigated. Additionally, although many
previous studies have investigated serial dependence in
emotional expressions (Liberman et al., 2018; Liberman
& Whitney, 2015; Mei et al., 2019; Taubert, Alais, et
al., 2016), no previous study has looked at the serial
dependence in emotion ratings of physically unrelated
faces embedded in natural context. All previous studies
on serial dependence, and most studies on emotion
perception, use stimuli without contextual information.
However, recent studies have shown that contextual
information is vital in emotion perception due to
the ambiguous nature of facial expressions (Aviezer,
Ensenberg, & Hassin, 2017; Barrett, Mesquita, B., &
Gendron, 2011; Greenaway, Kalokerinos, & Williams,
2018) and contextual information is perceived rapidly
(Barrett & Kensinger, 2010; Chen & Whitney, 2021)
and automatically in emotion perception (Aviezer,
Bentin, Dudarev, & Hassin, 2011). Additionally,
the amount of emotional information available in
the context has been found to be similar to the
amount of information in the face itself (Chen &
Whitney, 2020, 2021). Thus investigations of serial
dependence of emotion should include contextual
information to improve the ecological validity of the
findings.

Our results cannot be explained by central tendency
(Hollingworth, 1910) because no serial dependence
was found in our permuted null distributions or
n + 1 control condition (Figure 5). All n-back trials
were compared to the permuted null distribution to
control for such artifacts. Additionally, our results
cannot be explained because of physical biases or poor
sensitivity to change because the frames presented
in each trial were physically independent of each
other.

One limitation of the current study was that we used
static frames from a video instead of using a dynamic
video to investigate the autocorrelation in the emotion
ratings. Using static frames was necessary in order
to collect independent ratings for each independent
frame of a video, which decorrelates the physical
autocorrelations in the stimulus from those introduced
by the observers. This means that for any given frame in
a single video, the emotion rating given to the frame is
independent of the frame that came before it and thus
is not influenced by the emotion rating in the previous
frame. This allows us to measure the autocorrelation
present in the natural emotion statistics of the video
and removes the perceptual autocorrelation that
observers introduce in their perception of sequential
frames when watching a video. Dynamic stimuli have
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recently been used to investigate serial dependence
(Manassi & Whitney, 2022) and future research should
continue using dynamic stimuli to investigate how serial
dependence may function in the real world. Another
limitation here is that we cannot identify the specific
stage(s) at which the measured serial dependencies
occur, though previous studies suggest that it happens
on object-level visual representations (Liberman et
al., 2014; Collins, 2021). In fact, serial dependence
in affective judgments could emerge at many stages,
including in perceptual representations and also in
decision and memory. Another limitation of the current
study is that we are unable to investigate whether there
were familiarity effects in participants’ responses. If an
observer has seen one of the movie clips before and is
familiar with the context of a frame, this could influence
their perceptual judgments, but it would not alter
the measured natural emotion statistic. Additionally,
because the stimuli were completely random across
each observer, any familiarity effect would introduce
noise in the data; it would not introduce spurious
movie- or percept-based autocorrelations (Figure 3),
nor would it introduce an artifactual serial dependence
(Figure 5).

Conclusion

Our findings demonstrate that the perceptual stability
of emotion may follow the stability of emotion that is
naturally present in the real world. The human brain
may have adapted serial dependence in represented
emotion to mimic the normal autocorrelations that
are present in typical experience, because this would
improve the efficiency, accuracy, and consistency of
emotion perception (Cicchini et al., 2017; Cicchini et
al., 2018; Fischer & Whitney, 2014; Liberman et al.,
2014; Manassi & Whitney, 2022).

Keywords: emotion, perception, serial dependence
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