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Abstract

Many studies have documented that first-order motion influences perceived position. Here, we show that second-order (contrast
defined) motion influences the perceived positions of stationary objects as well. We used a Gabor pattern as our second-order stimulus,
which consisted of a drifting sinusoidal contrast modulation of a dynamic random-dot background; this second-order carrier was envel-
oped by a static Gaussian contrast modulation. Two vertically aligned Gabors had carrier motion in opposite directions. Subjects judged
the relative positions of the Gabors’ static envelopes. The positions of the Gabors appeared shifted in the direction of the carrier motion,
but the effect was narrowly tuned to low temporal frequencies across all tested spatial frequencies. In contrast, first-order (luminance
defined) motion shifted perceived positions across a wide range of temporal frequencies, and this differential tuning could not be
explained by differences in the visibility of the patterns. The results show that second-order motion detection mechanisms contribute
to perceived position. Further, the differential spatial and temporal tuning of the illusion supports the idea that there are distinct position

assignment mechanisms for first and second-order motion.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of striking illusions show that visual motion
influences perceived position (De Valois & De Valois,
1991; Durant & Johnston, 2004; Edwards & Badcock,
2003; Fang & He, 2004; Fu, Shen, & Dan, 2001; Matin,
Boff, & Pola, 1976; McGraw, Walsh, & Barrett, 2004;
McGraw, Whitaker, Skillen, & Chung, 2002; Mussap
& Prins, 2002; Nishida & Johnston, 1999; Ramachandran
& Anstis, 1990; Snowden, 1998; Whitaker, McGraw, &
Pearson, 1999; Whitney & Cavanagh, 2000; Whitney
et al., 2003; Zanker, Quenzer, & Fahle, 2001; for a review,
see Whitney, 2002). However, only the first order, lumi-
nance-based motion-induced position shift has been char-
acterized in detail. The illusion shows band pass temporal
frequency tuning, peaking around 4-8 Hz (De Valois &
De Valois, 1991; Whitney & Cavanagh, 2000). As well as
showing relatively specific temporal frequency tuning, the
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motion-induced position shift is also sensitive to the rela-
tive timing of the motion and position information. For
example, we found that if a moving texture reverses direc-
tion unpredictably, the perceived shift in the position of a
nearby flashed object depends on the direction of the tex-
ture’s motion approximately 200-300 ms later (Whitney
& Cavanagh, 2000). Using a single moving object (rather
than a field of moving texture), Durant and Johnston
(2004) found that a nearby flashed stimulus appears shifted
most when it precedes the position of the moving object by
about 80-100 ms. Both of these temporal asynchronies
indicate that assigning an object’s position (or relative posi-
tion) involves lengthy delays or integration periods (cf.
Krekelberg & Lappe, 2001). In addition to being temporal-
ly tuned, the motion-induced position shift is low pass
tuned to spatial frequency, peaking at less than 1 cycle/
deg (De Valois & De Valois, 1991).

This spatial and temporal tuning only characterizes the
influence of first-order motion on position, but does not
say anything about the limitations or properties of other
types of motion (non-first-order motion). The only studies
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of the motion-induced position shift using non-first-order
motion employed illusory motion (long-range apparent
motion or inferred motion—motion behind occluders;
Shim & Cavanagh, 2004; Watanabe, Nijhawan, & Shim-
0jo, 2002; Watanabe, Sato, & Shimojo, 2003). One difficul-
ty measuring the tuning properties of non-first-order
motion, such as inferred motion and ambiguous apparent
motion, is that the spatial and temporal frequency of the
patterns cannot be easily manipulated.

One type of non-luminance-based motion whose tempo-
ral and spatial frequencies can be manipulated is second-
order (contrast defined) motion. Here, we tested whether
second-order motion influences perceived position, and
measured the spatial and temporal tuning of this effect.
We found that second-order motion does influence the per-
ceived positions of static objects, and, moreover, we found
that the second-order motion-induced position shift shows
distinct tuning from the first-order motion-induced posi-
tion shift.

2. Experiment 1: The influence of second-order motion on
perceived position

2.1. Methods

The methods in the first experiment involved three stag-
es: determining threshold contrast, measuring the equilu-
minance point using a minimum motion technique, and
measuring the perceived positions of second-order defined
drifting Gabors. (Hereafter, the term ‘second-order
Gabor” refers to Gabors with contrast-modulated carri-
ers—Fig. 1; “first-order Gabor,” on the other hand refers
to Gabors with luminance-defined carriers).

Three subjects with normal or corrected-to-normal visu-
al acuity participated in Experiments 1 and 2. Stimuli were
presented on a high-resolution CRT monitor (Sony Multi-
scan G520, 1024 x 768 pixels, 100 Hz refresh) using an
Apple G4 Power Macintosh with OS9. Subjects were seat-
ed in a dark room and immobilized with a chinrest placed
49 centimeters from the screen.

To determine the threshold contrast (the first phase of
the experiment), subjects fixated on a point (1.2 deg diam-
eter) and reported the direction of motion within a Gabor
located 10.7 deg above the fixation point (from center to
center). The Gabor consisted of a dynamic random-dot
pattern (each dot was 0.2 by 0.2 deg, refreshed every
10 ms) modulated by a contrast-defined sinusoid, which
could be 0.71, 0.35, or 0.18 cycles/deg, determined random-
ly on each trial (Fig. 1). A static contrast-modulated
Gaussian envelope blurred the edges of the Gabor
(3.7 deg full width at half maximum amplitude).

The static envelope remained centered above the fixation
point, but contained contrast-defined motion (the sinusoi-
dal carrier) randomized leftward or rightward across trials
in either direction. The temporal frequency (either 1.6, 3.2,
or 6.3 Hz) was also randomized across trials. The subjects’
task was to report direction of motion for each trial.

Fig. 1. Example second-order Gabor used in the first experiment. The
Gabor consisted of a dynamic random-dot pattern, modulated by a
sinusoidal contrast-defined carrier that drifted either leftward or
rightward, and a Gaussian contrast-modulated envelope (to blur the
edges). The sinusoidal carrier (visible here as random dots alternating
with gray bars) was the only moving component. The Gaussian contrast-
modulated envelope was always static. The dynamic random-dot
background was updated every frame and produced a broadband noise
(e.g., TV snow). The pictured pattern has a sinusoidal carrier with
exaggerated contrast to reproduce in print; the actual Gabor had much
lower contrast determined individually according to each subject’s
threshold (see Methods). Formally, the Gabor is described as:
L(xy,0) = B+ {V = B4 [ELBmnD (1 sin{((SF x3) + (TF # 1) + 2n})
*eXp m , where L(x,y,t) is the luminance at any point at time #; E is
physical equiluminance (mean luminance); V is subject’s equiluminance
value (see Methods); R(x,y,t) is a random-dot array in time; D is the
depth of the contrast modulation (the incremental contrast above and
below E); SF is the spatial frequency of the carrier (pixels/cycle); TF is
the temporal frequency of the carrier (cycles/degree); r is distance of (x,y)
from the center of the Gabor; ¢ is the standard deviation of the static
Gaussian contrast envelope; and M is the maximum radius of the
Gaussian envelope. Because the monitor’s refresh was 100 Hz, ¢ is
defined in 10 ms increments.

Subjects first encountered a high contrast display. The
threshold contrast was determined by incrementally
decreasing the contrast until subjects reported the direction
of motion with 90% accuracy over 10 sequential trials (run-
ning average).

A minimum motion technique similar to that used by
previous authors (Anstis & Cavanagh, 1983; Nishida,
Edwards, & Sato, 1997; Seiffert & Cavanagh, 1998) was
administered to find each subject’s equiluminance value
(the second phase of the experiment). Subjects fixated on
a point 4.49 deg above a circular aperture (edge-to-edge)
that was 11.2 deg in diameter. Inside the aperture, a lumi-
nance-defined sine wave (0.18 cycle/deg) was flickered in
counterphase at 5 Hz. A second, contrast-defined grating
(contrast determined above), was also presented in count-
erphase at 5 Hz. The luminance and contrast-defined grat-
ings were interleaved in a four-frame sequence such that
each sine wave was shifted by 90 deg (i.e., quadrature
phase, luminance grating presented in even frames, con-
trast-modulated grating presented in odd frames). If only
the luminance-defined grating were visible, there would
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be no directional motion percept; however, if the contrast-
defined grating visibly deviates from equiluminance, the
subject perceives unidirectional motion. On each trial
(0.5 s duration), the luminance midpoint of the contrast-
modulated grating was randomly varied (one of 11 values
centered on physical equiluminance) and, using a method
of constant stimuli task, subjects were asked to judge the
direction of motion in the aperture (leftward/rightward).
Each subject participated in 220 trials (20 trials for each
of the 11 luminance values). The luminance midpoint (the
relative luminance between the contrast-modulated seg-
ments of the second-order grating) that produced a percept
of ambiguous motion (point of subjective equality) is the
point of equiluminance (see Anstis & Cavanagh, 1983;
Nishida et al., 1997; Seiffert & Cavanagh, 1998 for more
details).

The main experiment (the third phase) utilized a sub-
ject’s luminance threshold and equiluminance value to
determine the effect of second-order (contrast defined)
motion on the coding of location. Subjects fixated on a ver-
tically centered point and made judgments about the rela-
tive locations of two vertically aligned Gabors (8.15 deg
above and 10.1 deg below the fixation point). The Gabors
were identical to those described above (sinusoidal
contrast-modulated dynamic random noise with a con-
trast-modulated static Gaussian envelope). The contrast-
modulated sine-wave carriers in the top and bottom
Gabors always drifted in opposite directions (Fig. 2A).
On each trial, the top and bottom Gabors were presented
horizontally offset (misaligned) in opposite directions by
one of six values. The Gabors were presented for 500 ms,
after which subjects judged whether the one at the top of
the display appeared to the left or right of the Gabor on
the bottom (method of constant stimuli).

For each of three spatial frequencies (0.18, 0.35,
0.71 cycles/deg), there were six temporal frequencies tested
(ranging from 0.4 to 37.5 Hz) for a total of 18 conditions.
Each of the 18 conditions was tested 8 times for each of the
6 horizontal offsets, for a total of 864 trials per testing
block. For each of the 18 conditions, a psychometric
function was fit to the data from the logistic function
{1/(1 4+ exp[—a(x—b)])}, where b estimates the physical
misalignment between the Gabors that creates an apparent
alignment (the point of subjective equality, PSE; (Finney,
1971; McKee, Klein, & Teller, 1985)). Each subject partic-
ipated in 3 blocks for a total of 2592 trials, and the condi-
tion PSE was based on an average of the PSEs estimated in
the 3 blocks of trials.

2.2. Results

Fig. 2A shows the stimuli used in the first experiment.
The contrast of the Gabors pictured here is exaggerated
to be clearly visible; in the actual experiment, the contrast
was 33.1, 19.0, and 28.8% (Michelson contrast) for subjects
DB, JS, and JL, respectively. Although the envelopes of the
Gabors were always physically aligned, the drifting con-

Presented Perceived

Fig. 2. Stimulus and percept in the first experiment. (A) Two vertically
aligned second-order Gabors appeared misaligned (B) when the contrast-
defined carriers drifted in opposite directions. The envelopes of the two
Gabor patterns were physically stationary; only the carrier was moving.

trast-modulated carriers caused the static envelopes (i.e.,
the overall patterns) to appear shifted (as depicted in
Fig. 2B).

The representative psychometric function in Fig. 3
shows the magnitude of the second-order motion-induced
position shift for one spatial and temporal frequency.
The inflexion point—the PSE—shows that the Gabors
appeared shifted by 0.30 deg in the direction of the carrier’s
motion in this particular condition. The magnitude of the
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Fig. 3. Representative psychometric function for subject DB in the first
experiment (3.2 Hz, 0.18 cycle/deg condition). The abscissa shows the
physical misalignment between the second-order Gabors (positive values
indicate that the Gabors were displaced opposite the direction of the
carrier motion). The ordinate shows the proportion of responses in which
subjects judged the Gabors as being misaligned (shifted) in the direction of
the carrier motion. The point of subjective equality (PSE, the inflexion
point) is the physical misalignment between the Gabors that created an
apparent alignment; this estimates the magnitude of the illusory position
shift. The PSE for this condition was 0.30 deg, which is one of the smaller
effects but is still significant (¢, = 3.49, P <0.05). Error bars = SEM.
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shift in this condition is one of the smaller of all the condi-
tions tested, but is still significant (¢, = 3.49, P <0.05).
Fig. 4A shows that there was a significant and consistent
shift in the perceived position of the Gabors (maximum
effect for subject DB: 0.50 deg; the least significant overall
effect was for subject JS, F( 736 = 23.56, P < 0.01), and the
misalignment varied primarily as a function of the tempo-
ral frequency of the contrast-defined carrier (Fig. 4B;
F736)=5.13, P <0.001). The effect did not vary as a func-
tion of spatial frequency (F{2 36y = 2.5, P > 0.05), or at least
the tuning is extremely broad (Fig. 4D).

One might be concerned that the second-order Gabors
in this experiment may have inadvertently included lumi-
nance artifacts. To rule out this possibility we used dynam-
ic random-dot patterns, which eliminate local first-order
artifacts that can be present in static contrast-modulated
displays (Smith & Ledgeway, 1997). We also used very
low contrast stimuli (near threshold), which reduces lumi-
nance-based artifacts and also primarily drives second-or-
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der motion detectors (Seiffert & Cavanagh, 1999).
Further, to test whether there were any residual first-order
motion signals, we confirmed that our second-order drift-
ing Gabors did not produce a static motion aftereffect
(MAE; Mather, Verstraten, & Anstis, 1998). It is known
that second-order motion does not elicit an MAE on static
test patterns (Derrington & Badcock, 1985; McCarthy,
1993; Nishida & Sato, 1995), so this confirms that our con-
trast-modulated Gabors really were driving second-order
motion processes alone.

3. Experiment 2: Comparing first- and second-order
motion-induced position shifts

The first experiment revealed the tuning of second-order
motion’s influence on perceived position. The purpose of
the second experiment was to compare these results to
the tuning of the first-order motion-induced position
displacement.
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Fig. 4. Results for the first experiment. (A) The second-order motion-induced position shift as a function of the carrier temporal frequency for two
representative subjects. Different symbols refer to three tested spatial frequencies (see legend). The effect is narrowly tuned, peaking at around 4 Hz, and
falls to zero at higher temporal frequencies. (B) Averaging the data across all three subjects shows that the effect is well characterized by a temporal
frequency selective mechanism. (C) The illusory position shift as a function of carrier’s spatial frequency. Different symbols refer to tested temporal
frequencies (see legend). The position shift is roughly invariant with spatial frequency (F{,36) = 2.5, P > 0.05). (D) Replotting the data from (B and C)
shows the data as a function of carrier velocity, grouped by spatial frequency. Because of the narrow temporal frequency tuning, the effect is limited to
lower velocities. There is a significant overall effect for each subject (JS: F;736 = 23.56, P <0.01; DB: F(;736 = 218.8, P <0.001; JL: F{;7 35 = 66.52,

P <0.001). Representative error bars +1 SEM.
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3.1. Methods

The methods in the second experiment were identical to
the third phase of the first experiment except that the
Gabors contained first-order, luminance-defined carrier
gratings. The carrier contrast was identical to that deter-
mined in the first phase of the first experiment. The carrier
luminance midpoint (the average overall brightness of the
carrier) was identical to that determined in the second
phase of the first experiment (i.e., based on the minimum
motion technique in the first experiment). For each of the
three tested spatial frequencies (same as in Experiment 1),
there were six temporal frequencies (ranging from 0.4 to
25 Hz), for a total of 18 conditions. The protocol, task,
and analysis were identical to those in the first experiment.

3.2. Results

Consistent with previous studies, the luminance-defined
drifting Gabors (Fig. 5) appeared shifted in position (see
Whitney, 2002 for a review). Fig. 6 shows a representative
psychometric function, which reveals the magnitude of the
illusory position shift (0.75 deg illusory displacement in this
condition). Fig. 7A shows that the motion-induced posi-
tion shift varied as a function of the carrier’s temporal fre-
quency (across all three subjects, Fig. 7B reveals a
significant effect; Fg 36 = 4.33, P <0.01). The peak mis-
alignment occurred at lower spatial frequencies across
every temporal frequency (Fig. 7C; Fpo36 =797,
P <0.001). This tuning is similar to the temporal contrast
sensitivity function (Kelly, 1979), but is distinct from the
motion sensitivity function, which is low pass (Nakayama,
1985). Replotting the data as a function of carrier velocity
reveals that the first-order motion-induced position dis-
placement generally increases with increasing velocity,
but the peak effect at higher velocities always occurs for
lower spatial frequencies (Fig. 7D). Velocity sensitive chan-
nels may therefore play an important role in mediating the
first-order motion-induced position shift, and the illusion
supports the existence of mechanisms that simultaneously
code the motion and form of an object (Burr, 1979; Burr
& Ross, 1982, 2002; Burr, Ross, & Morrone, 1986; Fahle
& Poggio, 1981; Geisler, 1999; Morgan, 1976, 1980;
Nishida, 2004).

There are some noticeable differences between first- and
second-order motion’s influence on perceived position.
Comparing Figs. 4 and 7 reveals that the second-order
motion-induced position shift is roughly invariant with
the spatial frequency of the carrier, whereas the shift is
much greater at low spatial frequencies for first-order
motion. Moreover, the second-order motion-induced posi-
tion shift is more narrowly tuned to temporal frequency.

It is possible that this narrower tuning—the temporal
low pass characteristics of the second-order motion-in-
duced position shift (Fig. 4B)—may be due to a reduction
in the visibility of the contrast-defined Gabors (compared
to the first-order Gabors in Experiment 1). While the phys-

Fig. 5. Stimulus and percept in the second experiment. (A) Two vertically
aligned Gabors (first-order drifting carriers with a contrast-modulated
Gaussian envelope) were presented. (B) Consistent with previous studies,
the luminance-defined drifting carriers caused the Gabors to appear
shifted in position, creating an illusory misalignment. As with the second-
order Gabors, the envelopes of the two Gabor patterns in this experiment
were physically stationary; only the carrier was moving.
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Fig. 6. Representative psychometric function for one subject in the second
experiment (subject DB: 0.75 Hz, 0.18 cycle/deg condition). Format of the
graph is identical to that in Fig. 3. The PSE (perceived misalignment
between the Gabors) in this condition was 0.75 deg. Similar to Fig. 3, this
is one of the smallest condition effects but is still significant () = 12.10,
P <0.05). Error bars + SEM.

ical contrast was equated for the first and second-order
stimuli, it is possible that the illusory position shift may
have varied as a function of salience or visibility, which
was necessarily higher for the first-order Gabors. To
address this possibility, we reduced the contrast of the
first-order Gabors to psychophysically equate visibility
(rather than equating physical luminance). To do this we
used a variant of the minimum motion technique (Anstis
& Cavanagh, 1983): we interleaved frames of first- and sec-
ond-order carriers that drifted in opposite directions (using



D.W. Bressler, D. Whitney | Vision Research 46 (2006) 1120-1128 1125
A 7 JL ] e0.18
3 1.05- 1.05- =0.35
) 7 7 00.71
[~ - .
2z 0.7 I 0.7
o E § T
& 2 0.357 *0.18 035qF 1
3 | =0.35 i
£
O_ T T T <>07:LI O_I T T T DBI
0 67 133 20 267 0 67 133 20 267
TF (Hz) TF (Hz)
B ] 3SsAvg
~ 1.05-
[@)]
[0}
g i
BE 074
2> s
cE & ]
5
g 2 0.357 ©0.18
3 i =0.35
=
0_I T T T <>07]-I
0 67 133 20 267
TF (Hz)
C 7 °8~‘;8° %g 0?235 D 7 3 Ss Avg
— ) . o0. A3, [ ] . — 1 .
5 1.05 "12s = 05
e n © n
T= o7- Be 07-
11 — | sz !
8 71 1 SE 1
& 2 0.357 O\o $ 2 0.351 *0.18
38 i 3 - 035
S i 3 Ss Avg = i 00.71
O T T T T T T T T O T T T T T T
0.2 0.4 0.6 0.8 0 33 67 100 133 167

SF (cyc/deg)

Velocity (deg/sec)

Fig. 7. Results for the second experiment. (A) The first-order motion-induced position shift as a function of the carrier temporal frequency for two
representative subjects. Different symbols refer to three tested spatial frequencies (see legend). The effect peaks at around 7 Hz, but is band pass tuned to a
broad range of temporal frequencies across every tested spatial frequency. The effect is significant at the highest tested temporal frequency (25 Hz) for both
subjects (least significant effect was for subject DB, f,,=3.99, P <0.05). (B) The position shift, averaged across all three subjects, as a function of
temporal frequency. (C) The illusory position shift as a function of spatial frequency across all three subjects. Different symbols refer to tested temporal
frequencies (see legend). The position shift is greater at lower spatial frequencies (F(2,36) = 7.97, P < 0.001). (D) Replotting the data from (B and C) shows
the data as a function of carrier velocity, grouped by spatial frequency (see legend). At lower spatial frequencies, the peak shift in the apparent positions of
the Gabors occurs at higher temporal frequencies. The least significant overall effect is for subject JS (F{;7,36) = 1353.3, P < 0.001). Representative error

bars +1 SEM.

a second-order Gabor whose contrast was defined in the
first experiments). We then manipulated the contrast of
the luminance-defined carrier. When the contrast of the
first-order carrier was zero, the direction of motion per-
ceived in the Gabor followed the second-order carrier; we
measured the contrast of the luminance-defined carrier
required to null the perceived motion of the second-order
carrier. This level of contrast (6.2% Michelson for subject
DB) ensured that the first-order carrier was as hard to
detect as the second-order carrier in the first experiment,
and allowed us to make a direct comparison between the
magnitude of the effects for first- and second-order motion.
Using this contrast, we measured the perceived shift in the
positions of the Gabors with luminance-defined carriers
(12.5 Hz, 0.18 cycle/deg). Fig. 8 shows that, even at this
reduced contrast, subject DB still perceived a significant
shift in the positions of the first-order Gabors (solid

psychometric function). Whereas, at the same level of visi-
bility, the second-order Gabor produced no shift (dashed
psychometric function in Fig. 8). The first-order motion-in-
duced position shift (Fig. 7B) therefore maintains its broad
temporal frequency tuning even when the carrier’s visibility
is reduced. The dissociation here strongly suggests that the
limiting factor (the narrower tuning for second-order
motion) is not lower visibility, salience, or detectability.
Rather, there appear to be independent position assign-
ment mechanisms for the two types of motion.

4. Discussion

The results revealed that both first- and second-order
motion can influence perceived positions of objects.
First-order motion influences position assignment across
a broad range of temporal and spatial frequencies and
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Fig. 8. Perceived shift in the position of first- and second-order Gabors
with equated visibility. The luminance contrast of the first-order drifting
Gabor (with a carrier of 0.18 cycle/deg, 12.5 Hz) that cancelled the motion
of the original second-order drifting Gabor (the one used in the first
experiment, also with a carrier of 0.18 cycle/deg, 12.5 Hz) was 6.2%
Michelson contrast for subject DB. At this contrast, the visibility of the
first-order Gabor was equated to that of the second-order Gabor. The
psychometric function for this reduced contrast first-order Gabor (solid
curve) reveals a PSE of 0.99 deg, showing that the first-order Gabor
appeared shifted in position even when its visibility was equated to that of
the second-order Gabor. The psychometric function for the second-order
Gabor, on the other hand, reveals a perceived shift of only 0.074 deg
(dashed curve); this is significantly less than the first-order effect (even with
equated visibility; 7,5y = 17.2, P <0.001). This suggests that the differen-
tial temporal frequency tuning for first- and second-order motion is not a
product of visibility differences, but is due to independent position
assignment processes for the two types of motion. Error bars +1 SEM.

depends on both. Second-order motion, on the other
hand, influences perceived position over a narrower
range of temporal frequencies and is largely invariant
with spatial frequency.

First- and second-order motion are thought to be pro-
cessed by different mechanisms (Cavanagh & Mather,
1989; Derrington & Badcock, 1985; Edwards & Badcock,
1995; Ledgeway & Smith, 1994; McCarthy, 1993; Nish-
ida & Sato, 1995; Seiffert & Cavanagh, 1998). For exam-
ple, second-order motion could be detected by higher
level passive (Edwards & Badcock, 1995; Nishida &
Sato, 1995) or attentionally mediated processes such as
attentive tracking or salience maps (Cavanagh, 1992;
Lu & Sperling, 1995), whereas first-order motion is
detected by low-level spatio-temporal energy sensitive
mechanisms (Adelson & Bergen, 1985; van Santen &
Sperling, 1985; Watson & Ahumada, 1985). The differen-
tial tuning of first- and second-order motion found here
may support this division, but the results also show that
both types of motion influence perceived position. Since
first- and second-order moving patterns (at least low con-
trast, low temporal frequency patterns) are initially
detected by independent mechanisms, each type of
motion may independently influence coded location.
The stage at which location is coded could be the same
for both first- and second-order motion (in which case
it is the independent motion processing streams that
causes the tuning differences in Figs. 4 and 7). Alterna-

tively, position could be coded at different stages for
first- and second-order motion. This interesting possibili-
ty needs to be tested in future experiments.

4.1. High-level motion perception

The relatively narrow temporal frequency tuning for the
second-order motion-induced position shift (Fig. 4) is sim-
ilar to the range of temporal frequencies over which atten-
tion operates (the cutoff temporal frequency for the
perceived shift in the second order Gabors is about
12 Hz). For example, position-based second-order motion
detectors sensitive to low-contrast patterns are restricted
to low temporal frequencies (e.g., below 8 or 10 Hz; Seiffert
& Cavanagh, 1999). Moreover, attentively tracking items
over space and time (Horowitz, Holcombe, Wolfe, Arse-
nio, & DiMase, 2004; Verstraten, Cavanagh, & Labianca,
2000), or attentively binding features across space (Hol-
combe & Cavanagh, 2001) both have a coarse temporal
resolution. This raises the possibility that a slow attentional
mechanism may be responsible for the reassignment (dis-
placement) of perceived location in second-order moving
patterns.

The involvement of attention in the second-order motion-
induced position shift is supported by a number of demon-
strations that high-level motion shifts perceived position
(by high-level motion we mean the percept of motion, driven
by top-down processes, in the absence of any physical move-
ment or motion energy). For example, even without any
physical motion in the scene, implied motion (e.g., motion
behind an occluder) and ambiguous motion (e.g., a bistable
quartet) can shift the positions of nearby static objects (Shim
& Cavanagh, 2004; Watanabe et al., 2002, 2003). The per-
ceived shift always follows the direction of the perceived
motion. Another recent demonstration has shown that sup-
pressing a moving stimulus with binocular rivalry eliminates
the motion-induced position displacements, suggesting that
awareness of motion may strongly modulate the position
shifts (Watanabe, 2005).

If (low contrast, low speed) second-order motion is detect-
ed by a high-level mechanism (e.g., Seiffert & Cavanagh,
1998)—one that also detects implied/inferred motion as well
as ambiguous motion—then perhaps a number of the
motion-induced position shifts could be grouped as a single
phenomena. Attentive tracking (Cavanagh, 1992), for exam-
ple, may explain the perception of motion in ambiguous
apparent motion displays as well as second-order motion.
If there is a single top-down mechanism responsible for cod-
ing the motion that ultimately shifts perceived position, then
we should observe the same kind of tuning found in Fig. 4 for
other types of displays (such as those used by Shim & Cava-
nagh, 2004, and Watanabe et al., 2002, 2003).

4.2. Passive, low-level motion

Although top-down motion does influence perceived
position, and second-order motion may be processed by
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such a mechanism, previous studies have shown that the
awareness of first-order motion is not necessary to shift
the perceived position (Whitney, 2005). This demonstrates
that passive luminance-based motion detectors can code
position without the involvement of top-down processes
(top-down processes, based on object knowledge or atten-
tional shifts, require an awareness or percept of motion).
However, it is not clear if this is the case for second-order
motion; future experiments are required to test whether the
awareness of second-order motion is actually necessary to
shift perceived position.

The dissociation found here between the tuning for first-
and second-order moving patterns suggests that there is no
single motion detector that also serves to (re)assign object
position. Rather, it is likely that the location assigned to
an object depends on multiple motion pathways, and
may occur at multiple stages. It is conceivable that, for
the sake of flexibility, we may have perceptual access to dif-
ferent position coding mechanisms or levels in the hierar-
chy. This may be a unique feature of position
information because, unlike other features, there is a great
deal of redundancy in the position information represented
at multiple levels of the visual system (e.g., position is
explicitly or at least implicitly registered in most early visu-
al areas). The fact that position information is redundant
may be a byproduct of efficient coding (e.g., maintaining
retinotopic mapping may save wiring, or may ease binding
of information), or it could reflect the importance of posi-
tion information relative to other types of visual informa-
tion. In any case, redundant position coding raises the
possibility that we may have independent perceptual access
to position information at multiple stages. This may help
explain why so many different types of visual motion
(first-order, second-order, and illusory motion) can all
influence perceived position, but each in a slightly different
way.
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