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Human face recognition is robust even under conditions
of extreme lighting and in situations where there is high
noise and uncertainty. Mooney faces are a canonical
example of this: Mooney faces are two-tone
shadow-defined images that are readily and holistically
recognized despite lacking easily segmented face
features. Face perception in such impoverished
situations—and Mooney face perception in
particular—is often thought to be supported by
comparing encountered faces to stored templates. Here,
we used a classification image approach to measure the
templates that observers use to recognize Mooney
faces. Visualizing these templates reveals the regions
and structures of the image that best predict individual
observer recognition, and they reflect the underlying
internal representation of faces. Using this approach, we
tested whether there are classification images that are
consistent from session to session, whether the
classification images are observer-specific, and whether
they allow for pattern completion of holistic
representations even in the absence of an underlying
signal. We found that classification images of Mooney
faces were indeed non-random (i.e., consistent session
from session) within each observer, but they were
different between observers. This result is in line with
previously proposed existence of face templates that
support face recognition, and further suggests that
these templates may be unique to each observer and
could drive idiosyncratic individual differences in holistic
face recognition. Moreover, we found classification
images that reflected information within the blank
regions of the original Mooney faces, suggesting that
observers may fill in missing information using
idiosyncratic internal information about faces.

Introduction

Faces play a central role in our everyday life, and
our visual system is in turn extremely sensitive to them.
Faces convey critical social and emotional information;

they guide interactions and our everyday behavior
(Costela & Woods, 2019; Jack & Schyns, 2015; Coutrot
& Guyader, 2014). Reinforced by a lifelong exposure to
faces, humans have developed a remarkable preference
for faces over other objects from infancy (Umiltà,
Simion & Valenza, 1996; Farzin, Rivera & Whitney,
2009; Frank, Vul & Johnson, 2009; Pascalis & Kelly,
2009). We quickly find faces in a scene and direct
our attention and gaze toward them (Bindemann,
Burton, Hooge, Jenkins & de Haan, 2005; Boucart,
Lenoble, Quettelart, Szaffarczyk, Despretz, & Thorpe,
2016; Cerf, Frady & Koch, 2009; Cerf, Harel, Huth,
Einhauser & Koch, 2008; Costela & Woods, 2019;
Coutrot &Guyader, 2014; Crouzet, Kirchner & Thorpe,
2010; Foulsham, Cheng, Tracy, Henrich & Kingstone,
2010; Jack & Schyns, 2015; Marat, Rahman, Pellerin,
Guyader & Houzet. 2013; Martin, Davis, Riesenhuber.,
& Thorpe, 2018; Ro, Russell & Lavie, 2001; Theeuwes
& Van der Stigchel, 2006; Wolfe & Whitney, 2015; Xia,
Manassi, Nakayama, Zipser & Whitney, 2020). In fact,
humans can recognize faces under a wide range of
conditions, including under challenging environments
(Burton, Bruce & Hancock, 1999; Hole, George, Eaves
& Rasek, 2002). Humans have also developed expert
processing mechanisms specific to faces such as holistic
processing, the perception of faces as a whole (Farah,
Wilson, Drain & Tanaka, 1998; Maurer, Le Grand
& Mondloch, 2002; Sergent, 1984). Faces therefore
enjoy a unique and privileged position in human visual
processing.

Previous work suggests that face recognition may
involve comparing encountered faces to internal face
representations – templates (Cavanagh, 1991; Damasio,
Damasio & Van Hoesen, 1982; Sekuler & Abrams,
1968; Sergent, 1984; Simpson & Crandall, 1972; Smith
& Nielsen, 1970; Valentine, 1991). Faces that best
match those templates are processed more efficiently
than those that do not (Rossion, 2008; Rossion &
Boremanse, 2008). This matching process allows the
recovery of two- and three-dimensional information

Citation: Canas-Bajo, T., & Whitney, D. (2022). Individual differences in classification images of Mooney faces. Journal of Vision,
22(13):3, 1–16, https://doi.org/10.1167/jov.22.13.3.

https://doi.org/10.1167/jov.22.13.3 Received April 19, 2022; published December 2, 2022 ISSN 1534-7362 Copyright 2022 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.Downloaded from jov.arvojournals.org on 12/02/2022

mailto:teresacanasbajo@gmail.com
mailto:dwhitney@berkeley.edu
https://doi.org/10.1167/jov.22.13.3
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2022) 22(13):3, 1–16 Canas-Bajo & Whitney 2

Figure 1. Mooney faces used in this study in upright (top) and inverted (bottom) orientation. Mooney faces are two-tone images that
can be quickly recognized as faces despite lacking low-level face features. Mooney faces are processed as a whole; note that although
upright Mooney faces are easily perceived as faces, inverted Mooney faces are difficult or even impossible to recognize as such. For
this reason, Mooney faces are ideal stimuli to test holistic processing.

from the observed faces, even in impoverished or
extreme lighting conditions (Cavanagh, 1991). Valentine
(1991) defined the norm-based coding model, which
proposes that faces are encoded as distance vectors
to a prototype shaped by individual prior experience.
Others have aimed to define the structures of these
templates and proposed similar models of face
recognition that occur by matching observed faces
to template-like structures (e.g., Bar codes: Dakin &
Watt, 2009; Integral Images: Viola & Jones, 2004; Face
Recognition Units: Bruce & Young, 1986; Young &
Bruce, 2011). In these models, faces can be encoded in
terms of low-level features that can be parsed or easily
segmented. Although these models can accommodate
grayscale faces well, they may not be as effective for
faces that require holistic processing. For example,
they would not be as successful for two-tone shadow
defined faces (Mooney faces; Figure 1) because the
local features, edges, contours, and spatial frequency
content of Mooney faces are not discriminative of the
image as a face (Andrews & Schluppeck, 2004; Bona,
Cattaneo & Silvanto, 2016; Cavanagh, 1991; Farzin
et al., 2009; Latinus & Taylor, 2005; McKone, 2004;
Moore & Cavanagh, 1998). In principle, template-based
models are an appropriate way to analyze Mooney
faces (Cavanagh, 1991), but the templates need to carry
information about the holistic aspects of the face.

Previous work has shown that there are individual
differences in holistic processing of both grayscale
and two-tone Mooney faces: some individuals
process faces more holistically than others (DeGutis,
Mercado, Wilmer, & Rosenblatt, 2013; DeGutis,
Wilmer, Mercado, Cohan, 2013; Gauthier, 2020;
Russell, Duchaine & Nakayama, 2009; Wang, Li,

Fang, Tian & Liu, 2012). Interestingly, there are also
stimulus-specific individual differences in holistic
processing (Canas-Bajo &Whitney, 2020): specific faces
that are processed holistically by one observer are not
necessarily processed holistically by other observers.
The origin of these differences remains unclear. Here,
our goal was to test whether such idiosyncrasy in
holistic processing is caused by underlying individual
differences in observer-specific face templates.

Capturing or visualizing templates can be challenging
because they are implicit representations. One of
the most widely used and established techniques for
measuring templates is the reverse-correlation image
classification method (see Murray, 2011 for a review).
This technique is a data-driven method that has
been widely used in the literature to capture internal
representations—the image regions and structures that
are most important for detection, discrimination, or
classification (Ahumada, 1996, 2002; Ahumada &
Lovell, 1971; Beard & Ahumada, 1998; Mareschal,
Dakin & Bex, 2006; Neri & Heeger ,2002; Ringach &
Shapley, 2004; Solomon, 2002; Victor, 2005; Watson,
1998). More recently, the method has also been used to
visualize face templates (Brinkman, Todorov & Dostch,
2017; Dostch & Todorov, 2012; Dotsch, Wigboldus,
Langner & van Knippenberg, 2008; Éthier-Majcher,
Joubert & Gosselin, 2013; Gosselin and Schyns, 2003;
Karremans, Dotsch, & Corneille, 2011). In a standard
reverse-correlation experiment, the stimuli consist
of random noise overlaid over the same base face.
The observers’ task is to classify the stimuli based on
some construct (e.g., trustworthiness: Éthier-Majcher,
Joubert & Gosselin, 2013). Classification images are
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computed by averaging the noise patterns of the stimuli
that participants classified as being representative of the
construct of interest. Classification images can therefore
serve as a visualization of internal representations of
faces (Brinkman, Todorov & Dostch, 2017; Dostch
& Todorov, 2012; Gosselin & Schyns, 2003; Sekuler,
Gaspar, Gold & Bennett, 2004). The reverse-correlation
technique is ideal to tap into implicit representations of
faces because it is a purely data-driven method: noise is
generated randomly in each trial for each participant,
and participants use their own internal representation
of the construct without external biases (Mangini
& Biederman, 2004; Todorov, Dotsch, Wigboldus,
& Said, 2011). In the field of face recognition, this
method has been used to understand the basis of face
recognition at the group level (Mangini & Biederman,
2004; Sekuler et al., 2004) and how it is influenced
by factors like emotion (Brooks & Freeman, 2018;
Karremans, Dostch & Corneille, 2011; Jack, Caldara &
Schyns, 2012), perceptual disorders (Brinkman, Dotsch,
Zondergeld, Koevoets, Aarts & van Haren, 2019),
prejudice (Dotsch, Wigboldus, & Van Knippenberg,
2013), social cognition (Brooks, Stolier & Freeman,
2018), and culture (Dotsch et al., 2008; Jack et al.,
2012; Ratner, Dotsch, Wigboldus, van Knippenberg,
& Amodio, 2014). For instance, Dotsch and Todorov
(2012) used classification images to identify racial biases
in the perception of trustworthiness in faces.

Here, we use the reverse correlation technique to
investigate whether there are individual differences
in classification images of Mooney faces. Mooney
faces are highly impoverished two-tone black and
white blobs that are readily perceived as faces despite
lacking low-level face features that can be parsed in a
bottom-up fashion (Figure 1; Brodski, Paasch, Helbling
& Wibral, 2015; Goold & Meng, 2016; Ke, Stella, &
Whitney, 2017; Mooney, 1957; Schwiedrzik, Melloni &
Schurger, 2018). That is, the image must be recognized
as a face before any feature (e.g., an eye, a mouth, etc)
can be identified or localized (Cavanagh, 1991; Farzin
et al., 2009). Consequently, holistic processing plays
a critical role in the recognition of Mooney faces.
Holistic processing breaks down with inverted faces,
which makes inverted Mooney faces very difficult
to recognize (Andrews & Schluppeck, 2004; Bona,
Cattaneo & Silvanto, 2016; Cavanagh, 1991; Farzin
et al., 2009; Latinus & Taylor, 2005; McKone, 2004;
Moore & Cavanagh, 1998; Sergent, 1984). For these
reasons, Mooney faces are ideal stimuli to isolate
holistic processing (Figure 1).

The following experiments tested several
hypotheses. First, because our goal was to measure
the templates that support holistic perception
of Mooney faces, we expected that classification
images would be consistent from day to day.
Second, if previously found individual differences
in holistic processing reflect underlying observer-

specific templates (Canas-Bajo & Whitney, 2020),
we should find idiosyncratic classification images only
for upright but not inverted Mooney faces. Last, if
Mooney faces are recognized by matching the stimuli to
stored templates, classification images of Mooney faces
should reflect filled-in information that is missing in the
original, impoverished stimuli. Altogether, our study
aimed to investigate whether there are observer-specific
face templates (Experiment 1) and whether they allow
for pattern completion of the missing information in
the original Mooney faces (Experiment 2).

Experiment 1

Methods

Participants
Seven participants (three male, four female)

took part in this experiment. One participant was
excluded because they did not complete all trials of
the experiment. All subjects were recruited through
Mechanical Turk and provided written consent forms
before participation. All experimental procedures were
approved by the UC Berkeley Institutional Review
Board.

Material and design
The base faces in the reverse correlation task

consisted of four unfamiliar Mooney faces created by
Schwiedrzik, Melloni & Schurger (2018; face labels in
the original dataset: U0034, U0129, U0159, U0393).
These Mooney faces were presented both in upright and
inverted orientations, generating a total of eight base
faces for the reverse correlation experiment (Figure 1).
In order to assess the consistency of the subjects’
classification images, participants did the experiment
twice in two separate days. The time interval between
the two sessions was on average 3.4 days (std: 1.5 days).
In each experimental session, participants completed 8
blocks of 250 trials for each base image. Therefore each
participant completed 4000 trials in total: base images
× 250 trials per base image × 2 sessions (2000 trials per
session).

The presentation of the stimuli and the
data collection was controlled using Qualtrics
(https://www.qualtrics.com). Note that participants
used different monitors, so distance to monitor could
not be controlled.

Procedure
Stimuli were generated uniquely for each participant.

In each trial, we generated a random pattern of
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Figure 2. (A) To generate the stimuli for each trial, the same base image was overlaid with two identical but polarity-reversed random
patterns of noise. (B) Example trial. After a blank screen, two stimuli were presented, and participants were asked to select which of
two images was more face-like. (C) Classification images were generated by averaging the selected noise patterns across trials.

sinusoidal noise and its corresponding negative version
(Figure 2A). The random sinusoidal noise is defined by
4092 parameters, each defining the amplitude of one
truncated sinusoid ranging over two cycles (for more
details on how the random noise was generated, see
Dostch & Todorov, 2012).

Each trial consisted of two side-by-side stimuli: the
base face with the original noise superimposed and
the same base face with the polarity reversed noise
superimposed (Figure 2C). Participants’ task was to
select which of the two images presented was more
face-like by pressing the left or right button. The
stimuli were presented until observers gave a response.
Participants could move their eyes freely during the trial
and could take a break every 250 trials. The patterns
of noise were randomized for each trial separately for
each observer. That is, no two subjects saw the same
stimuli, and the same observer did not see the same
stimuli more than once. All participants completed
a demographics questionnaire followed by a question
regarding their previous experience with Mooney faces.

Data analysis
Our goal here was to investigate whether face

templates support recognition of Mooney faces, and
whether the templates, if present, are observer-specific.
We used classification images to visualize observers’
face templates. To generate the classification images,
we averaged all of the observer’s selected noise patterns
across trials, and we superimposed the resulting noise
on the base face (Figure 2C). The classification image
reveals the regions or structures that observers rely
on to classify an image as face-like. We generated one
classification image per base face, per subject. The
outcome was eight unique classification images for each
observer.

To evaluate whether observers’ classification images
were nonrandom, we tested the day-to-day consistency
of each observers’ classification images for each of
the eight base Mooney faces. The within-subject
consistency was defined as the test-retest pixel-wise
correlation between an observer’s classification images
in the first and second session. We then averaged all
within-observer Fisher z transformed correlations for
upright and inverted base faces, separately. Second,
we quantified the between-observer agreement in
classification images of Mooney faces. To this end, we
calculated the between-observer correlations across
different observers’ classification images for each base
face. Then we averaged all between-observer Fisher z
transformed correlations for upright and inverted base
faces, separately.

To test the significance of the within- and between-
subject correlations, we calculated a null distribution
of permuted correlations. In each iteration of the
permutation, for each base face, we shuffled the
responses that were given by each participant. We then
calculated a classification image from these shuffled
responses. This was effectively the classification images
an observer would have if the participant responded
randomly. Using this data, we generated a set of
1000 permuted classification images, per base face,
per participant. Note that our classification images
have signal included, which could artificially inflate
the correlations in both within- and between-subject
analyses. To control for this, we calculated null
distributions of permuted correlations, which maintain
all of the same signal information, but represent shuffled
responses, so any inflation of the correlations will occur
in the null distribution as well. In other words, we
never compare correlations to zero, always to permuted
shuffled null distributions. To generate the distribution
of permuted null within-subject correlations, for each
observer and each base face, we correlated the empirical
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classification image of the first session with each of
the permuted null classification images of the second
session. In the same fashion, to generate the distribution
of permuted null between-subject correlations, for each
pair observers and each base face, we correlated an
observer’s one-session empirical classification image
with each of the permuted null classification images of
another observer’s session.

Last, we quantified the individual differences of
classification images of Mooney faces by comparing
within- and between-observer agreement. The
significance of this comparison was tested using a
nonparametric permutation method: we computed
the empirical difference for within- and between-
correlations and compared it to the null difference for
the between and within correlations for randomized
responses. Across all analyses, to calculate the average
within- and between-subject correlations across base
faces or across observers, correlations were first

transformed from Pearson R correlations into Fisher z
correlations before averaging them.

Results

In this study, we measured classification images of
Mooney faces to investigate whether there are face
templates that support holistic face recognition and
whether these templates were observer specific. In our
experiment, participants classified which stimuli were
more face-like.

The outcome per observer was a classification
image for each base face tested (see Figure 3 for
some examples). Casual inspection hints that the
classification images of upright faces seem to be visible
and face-like (Figure 3A). In contrast, classification
images of inverted faces appeared to be less recognizable
(Figure 3B). Our hypothesis was that an observer’s

Figure 3. Sample resulting classification images of Mooney faces in Experiment 1 for two subjects. (A) Top row: upright Mooney faces
(in red). The Mooney face Classification images are recognizable (albeit noisy and ghostly). (B) Bottom row: inverted Mooney faces (in
blue). Inverted Mooney face classification images did not appear to be very obvious. See main text for details.
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Figure 4. Results of Experiment 1. (A) Within- and between-observer agreement for classification images collapsed across upright and
inverted faces. (B) Within- and between-observer agreement for classification images of upright base Mooney faces. (C) Within- and
between-observer agreement for classification images of inverted base Mooney faces. In all panels, solid dots represent the empirical
correlations, and the violin plots represent the respective permuted null distributions. Error bars represent the upper 97.5% and
lower 2.5% boundaries of the permuted null correlation distribution. ***p < 0.001, **p < 0.01, *p < 0.05. Nonsignificant
comparisons are indicated by n.s.

classification images represented the observer’s
underlying face representations. To test whether
classification images were even nonrandom, we
collapsed the upright and inverted faces (vertical pairs
of faces in Figures 3A, 3B) together. On the one hand,
the collapsed within observer correlation was the
average of the within observer correlations of upright
and inverted classification images. This averaged
correlation allowed us to investigate whether, across
all base faces, classification images were not random.
On the other hand, the collapse between observer
correlations was computed as the average of the
between-observer correlations of upright and inverted
classification images, and it represented the agreement
across observers for all faces. Altogether, the goal of this
analysis was to check and confirm that we could even
measure classification images that were significantly
different than random responses. If classification
images of face-likeness can be measured, then there
should be significant within- and between-subject
consistency. We found that there was both a significant
within- and between-observer correlation for collapsed
classification images of Mooney faces (within: Fisher
Z = 0.22, p < 0.01; between: Fisher Z = 0.21, p <
0.01; Figure 4A). This result shows that we effectively
measured classification images of face-likeness and that
they were not due to random responses.

The Mooney faces that we used in this experiment
require holistic processing to be recognized (Canas-Bajo
& Whitney, 2020; 2022; Farzin et al., 2009; Latinus
& Taylor, 2005; McKone, 2004; Moore & Cavanagh,
1998). If recognition of Mooney faces is supported
by holistic face templates, then classification images
of Mooney faces should reflect an advantage for

upright faces. Inverted Mooney faces are hard or
even impossible to recognize (Kanwisher, Tong &
Nakayama, 1998; McKone, 2004; Latinus and Taylor,
2005), so we expected weaker classification images of
inverted Mooney faces. Figure 3 seems to support
this division, showing what appear to be weaker
classification images for inverted faces. To address this
question quantitatively, we computed the within- and
between-observer agreement for classification images
of upright and inverted faces, separately. We found
that there was a significant within-observer agreement
in classification images for upright faces (Fisher Z
= 0.26, p < 0.001, per permutation test; Figure 4B)
but not inverted faces (Fisher Z = 0.18, p > 0.05, per
permutation test; Figure 4C). A direct comparison
of upright and inverted within-observer correlations
further confirmed that the day-to-day consistency of
the classification images was higher for upright than
inverted base faces (t = 90.96, p < 0.001). That is,
only upright Mooney base faces led to non-random,
consistent classification images from session to session.
Inverted Mooney faces did not. Similarly, we found a
significant between-observer agreement only for upright
Mooney faces (Fisher Z = 0.23, p < 0.01; Figure 4B),
but not inverted Mooney faces (Fisher Z = 0.19, p >
0.05; Figure 4C).

One of our primary goals was to investigate whether
classification images of Mooney faces were observer
specific. To this end, we compared the within- and
between- observer agreement in the classification
images of upright and inverted faces, separately. We
found that within-observer agreement of classification
images of upright Mooney faces was significantly
higher than the between-observer agreement (p < 0.05,

Downloaded from jov.arvojournals.org on 12/02/2022



Journal of Vision (2022) 22(13):3, 1–16 Canas-Bajo & Whitney 7

per permutation test; Figure 4B). This difference was not
significant in classification images of inverted Mooney
faces (p > 0.05, per permutation test; Figure 4C). This
result suggests that there are day-to-day consistent
individual differences in the classification images of
uprightMooney faces, which require holistic processing.

Discussion

The results of Experiment 1 indicate that
classification images of Mooney faces are consistent
from session to session. We also found that there
are individual differences in classification images of
Mooney faces, specific to upright faces. This result is
consistent with the idea that holistic face recognition
is supported by matching Mooney faces to face
templates (Cavanagh, 1991) and that these templates are
idiosyncratic—unique to each individual observer. One
concern with Experiment 1 is that data were collected
online using the Qualtrics platform, and participants
completed the experiment on their own computer
monitors. Thus we could not gamma correct or control
the linearity of each individual participant’s monitor.
Consequently, the individual differences found may
have been influenced by differences across monitors. It is
important to note that our inverted condition served as
a partial control for this possibility, and the dissociation
in results found for upright and inverted faces suggests
that the individual differences found in upright Mooney
faces are probably not due to differences in gamma
correction across the monitors. Nevertheless, individual
differences in monitors are an important concern, as
are individual differences in room set up, ambient
lighting, monitor distance, and other environmental
factors. We therefore conducted a second experiment,
in the laboratory, with a single controlled and calibrated
monitor. The goal of Experiment 2 was to replicate
Experiment 1 results and to further investigate whether
the individual differences in classification images
reflect an underlying idiosyncrasy in the internal
representations of faces.

Experiment 2

Experiment 2 had two goals. First, to control for
a possible contribution of individual differences in
monitors, hardware, software settings, environmental
factors, or any other differences due to the online nature
of the first experiment. We therefore conducted the
experiment in-person with a controlled environment,
constant hardware, and gamma correction of the
monitor used for all subjects. The second, more
theoretically important goal of Experiment 2 was to
investigate whether there is pattern completion within

classification images of Mooney faces. If Mooney faces
are recognized through a matching process to stored
face templates, then classification images should show
that observers fill in missing face feature information
within the original Mooney face. Additionally, if
holistic face recognition is supported by idiosyncratic
templates as suggested by Experiment 1, then we should
expect that the way information is filled in is unique to
each observer, at least for upright faces.

Method

Participants
Nineteen participants (eight male, eleven female) took

part in this experiment. All subjects were undergraduate
students at the University of California, Berkeley, and
provided written consent forms before participation.
All experimental procedures were approved by the UC
Berkeley Institutional Review Board.

Material
Stimuli were presented on a gamma corrected CRT

monitor at 100 Hz refresh rate, with 1024 × 768 pixels
resolution and a horizontal screen size of 40.5cm.
The monitor was placed 60 cm from a chin rest that
stabilized the participant’s head. At this distance,
all the face stimuli shown during the experiment
subtended 6° visual angle. The presentation of the
stimuli was controlled using MATLAB R2016b with
Psychophysics Toolbox 3 (Brainard and Vision, 1997;
Kleiner, Brainard, & Pelli, 2007).

Design, procedure and data analysis
Design, procedure, and data analysis was the same as

in Experiment 1. Average time between participants’
experimental sessions was 1.7 days (Standard Deviation
= 0.8)

Results

The first goal of Experiment 2 was to replicate
Experiment 1’s results with a single gamma-
controlled monitor and consistent environment across
observers. Consistent with Experiment 1, we found
significant within- and between-observer agreement
in classification images collapsed across upright and
inverted conditions, which further confirms that that
classification images of Mooney faces are consistent
from session to session and not due to random noise
(within correlation: Fisher Z = 0.23, p < 0.001;
between-subject correlation: Fisher Z = 0.22, p <
0.001; Figure 5A).
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Figure 5. Results of Experiment 2. (A) Within and between-observer agreement for classification images of all upright and inverted
base faces collapsed. (B) Within and between-observer agreement for classification images of upright base faces. (C) Within and
between-observer agreement for classification images of inverted base faces. In A-B, black dots represent the empirical correlation
found and the violin plots represent the respective permuted null correlations. Error bars represent the upper 97.5% and lower 2.5%
boundaries of the permuted null correlation distribution. ***p < 0.001, **p < 0.01, *p < 0.05. Nonsignificant comparisons are
represented with n.s.

Figure 6. Sample resulting classification images of Mooney faces in Experiment 2. (A) Top row: upright Mooney faces (in red). The
Mooney face Classification images are recognizable (albeit noisy and ghostly). (B) Bottom row: inverted Mooney faces (in blue).
Inverted Mooney face classification images did not appear to be very obvious. See main text for details.

We next compared the consistency and uniqueness
of classification images of upright and inverted faces,
separately. As in Experiment 1, classification images
of upright faces displayed a significant within- and
between-observer agreement (within-observer Fisher
Z = 0.24, p < 0.001; between-observer Fisher Z =
0.22, p < 0.001; Figure 5B). In this experiment, we
found that the within- and between-observer agreement
remained significant for inverted faces (within-observer

Fisher Z = 0.22, p < 0.001; between-observer Fisher
Z = 0.22, p < 0.001, per permutation test; Figure
5C), but it was nevertheless weaker than classification
images of upright faces (t = 26.32, p < 0.001).
Indeed, as in Experiment 1, casual inspection also
suggests that the classification images of upright
faces seem to be more visible and face-like (Figure
6A) than classification images of inverted faces
(Figure 6B).
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Figure 7. (A) Original Mooney face used as base face. (B) In red, original black areas in classification images. Correlations calculated
within these signal-free and otherwise featureless regions to analyze the extent of pattern completion. (C) Classification image
reflecting pattern completion. (D) Classification image with enhanced contrast to facilitate visualization of the filled-in areas.

Importantly, we found a relatively higher within-
observer agreement than between-observer agreement
that was specific to upright faces (p < 0.05, per
permutation test; Figure 5B). Replicating Experiment
1, this finding indicates that there are individual
differences in classification images that are specific
to upright Mooney faces, which require holistic
processing. The individual differences found in
Experiment 1 are evidently not due to the lack of a
consistent environment across observers. In contrast,
classification images of inverted faces were not found
to show observer-specific idiosyncrasies (p > 0.05, per
permutation test; Figure 5C).

So far, we showed that there are individual differences
in classification images of Mooney faces that are
consistent session to session. However, the question
still remained as to what these day-to-day consistent
classification images represent. Our hypothesis was
that they reflected participants’ internal representation
of faces. Mooney faces do not contain easily parsed
or bottom-up segmentable information about the
parts of the faces (one has to know it is a face before
localizing or identifying a particular eye or nose),
and some or all face features can be missing from
them (e.g., a half-illuminated faces). If classification
images reflect participants’ templates for faces, then
they might reveal filled-in information that is missing
at the image level. For example, a base Mooney face
that is only partially illuminated on the left side, and
mostly in complete darkness on the right side (Figure
7A), might nevertheless evoke a classification image
that includes details in the invisible portion of the
image. To test this hypothesis, we investigated whether
there is pattern completion in classification images of
Mooney faces. We operationalized pattern completion
as the information present in the classification image
only within the black regions of the Mooney face
(regions highlighted in red in Figure 7B). Any filling-in
or pattern completion of information could involve
a number of top-down decision processes and may

be, essentially, an “expectation” that the observer
had about whether the face had two eyes, whether
it remained obscured in shadow, whether it had an
attached contour corresponding to the cheek, and
more. To increase the power of the pattern completion
analysis and considering the similarity in results of
Experiments 1 and 2, we collapsed participant data
from both experiments for the following tests.

To measure whether classification images showed
pattern completion of missing face features within
the black regions of the original Mooney face, we
calculated the within-observer agreement within these
black regions (Figure 8A). These black regions do
not contain any signal, so any consistency in the
selected noise patterns within these areas would suggest
that the observer has perceptually completed parts
of the face that were not originally there. We found
significant within- and between-observer agreement
within the black regions of all collapsed classification
images (within-observer correlation: Fisher Z = 0.03,
p < 0.001; between-observer correlation: Fisher Z
= 0.02, p < 0.001; Figure 8A). This result indicates
there is pattern completion in classification images of
Mooney faces and is consistent with the hypothesis
that recognition of Mooney faces is supported by a
matching process to stored templates (Cavanagh, 1991).

When we explored pattern completion within
classification images of upright and inverted Mooney
faces separately, we found a significant within-subject
correlation within the black regions of upright Mooney
faces (Fisher Z = 0.04, p < 0.001, per permutation
analysis; Figure 8B). This indicates that there was
unique filling-in of missing information within single
individual observers. Moreover, this pattern completion
was consistent from session to session. This confirms
that the pattern completion result found in upright
Mooney faces was not random; that is, there was
meaningful information present in those regions that
was not originally there. As a visualization, note a
representative observers’ classification image in which
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Figure 8. Pattern completion results. (A) Within and between observer agreement in signal-free black areas of all original upright and
inverted Mooney faces collapsed. (B) Within and between observer agreement in black areas of the original upright Mooney face.
(C) Within and between observer agreement in black areas of the original inverted Mooney face. In all panels, solid dots represent
the empirical correlation found and the violin plots represent the respective permuted null correlations. Error bars represent the
upper 97.5% and lower 2.5% boundaries of the permuted null correlation distribution. ***p < 0.001, **p < 0.01, *p < 0.05.
Nonsignificant comparisons are represented with n.s.

pattern completion is evident (Figure 7): even though
there is no single face feature information on the right
side of the original upright Mooney face (Figure 7A),
the classification image of a sample observer showed
qualitative completion of the missing features (the
right eye, the chin line, the continuation of the mouth,
etc.; Figure 7C). Pattern completion becomes more
evident visually when we enhance the contrast of the
image (Figure 7D). We found no consistent pattern
completion for inverted Mooney faces (Fisher Z = 0.02,
p > 0.05; Figure 8C).

Moreover, if observers’ templates that support
face recognition are idiosyncratic, then classification
images should show unique pattern completion for each
participant. We found a significant but relatively low
between-observer agreement in the way black regions in
upright Mooney faces were filled-in (Fisher Z = 0.02,
p < 0.001; Figure 8B). This indicates some consistency
between observers, but the within-observer correlation
was significantly higher than the between-observer
correlation (p < 0.5, permutation analysis; Figure 8B).
These results suggest that there is pattern completion in
high-level object representations of upright faces, and
that the perceptually filled-in information was unique to
each observer. Inverted faces were different. Although
we found significant between-observer agreement in
the pattern completion of inverted Mooney faces
(Fisher Z = 0.01, p < 0.001; Figure 8C), the difference
between within- and between-observer agreement was
not significant. This result suggests that there is weaker
and less idiosyncratic pattern completion for inverted
faces.

Discussion

In Experiment 2, we aimed to replicate the results
found in Experiment 1 under a more controlled
experiment set up. In sum, we found that classification
images of Mooney faces were consistent from session
to session, as in Experiment 1. Similarly, we found
observer-specific differences in classification images of
Mooney faces that were specific to upright faces. This
finding confirms that the results of Experiment 1 were
not due to a floor effect.

Furthermore, to understand whether Mooney face
recognition is supported by matching them to stored
face templates, we explored whether there was day-to-
day consistent and unique filling-in of missing facial
information in classification images. To address this
question, we looked at the within- and between-subject
agreement only within the black regions of the original
Mooney face. We found within-observer agreement
within these black regions, indicating that there is
pattern completion in high-level object representations.
This result is in line with previous research showing that
Mooney face perception is supported by matching to
stored templates (Cavanagh, 1991; Damasio, Damasio
& Van Hoesen, 1982; Sekuler & Abrams, 1968;
Sergent, 1984; Simpson & Crandall, 1972; Smith &
Nielsen, 1970; Valentine, 1991). Pattern completion was
stronger in upright than inverted classification images.
Interestingly, the filled-in pattern was unique to each
observer only in upright faces, which suggests that the
idiosyncrasy in face recognition is specific to holistic
processing.
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General discussion

Previous work suggests that face recognition is
supported by a matching process between observed
faces and internal face templates (Cavanagh, 1991;
Damasio, Damasio & Van Hoesen (1982); Sekuler &
Abrams, 1968; Sergent, 1984; Simpson & Crandall,
1972; Smith & Nielsen, 1970; Valentine, 1991). Faces
that best match those internal face representations
are processed more efficiently than those that do not
(Rossion, 2008; Rossion & Boremanse, 2008). However,
proposed definitions of face templates often describe
a representation of low-level features, which do not
generally account for holistic processing of faces and
the advantage it affords face recognition (Dakin &
Watt, 2009; Viola & Jones, 2004). In the present study,
we used classification images of Mooney faces to
investigate whether there are face templates that are
consistent session to session, whether they support
holistic processing of Mooney faces, whether they are
observer specific, and whether they allow for pattern
completion of holistic representations.

Our results show that there are day-to-day
consistent classification images of Mooney faces.
The reverse-correlation task used here was purely
data driven: observers were not biased toward any
external definition of face-likeness, so they applied
their internal face presentations to classify the stimuli
as face-like. Note that unlike face discrimination and
identification tasks commonly used in classification
image experiments, the face-likeness task used here may
also involve detection processes (Tyler, & Chen, 2006).
This suggests that observers’ classification images
reflected their underlying, implicit face representations.
Importantly, we found that classification images of
upright Mooney, but not inverted Mooney faces,
were observer specific. This is consistent with the
idea that there are stored face templates that support
holistic processing and that those templates may be
idiosyncratic, which could be driving the individual
differences in holistic processing found previously in
the literature (Canas-Bajo & Whitney, 2020; de Heering
& Rossion, 2008; Goodman, Sayfan, Lee, Sandhei,
Walle-Olsen, Magnussen, Pezdek, & Arredondo, 2007;
Ferguson, Kulkofsky, Cashon & Casasola, 2009;
Kuefner, Cassia, Vescovo & Picozzi, 2010; Susilo,
Crookes, McKone, & Turner, 2009). These results
support the conclusion that holistic and part-based
processing are distinct mechanisms of face recognition
(McKone, 2004; Moscovitch, Winocur & Behrmann,
1997), and that holistic processing is idiosyncratic,
whereas part-based processing is relatively universal
(Canas-Bajo & Whitney, 2020).

Furthermore, we found that observers filled in
missing information in the original base Mooney
face. Humans are highly sensitive to incomplete and

partial visual information, resulting in object and scene
recognition that proceeds seemingly unimpaired by
occlusions and noise. Many examples of this have been
reported, including contour and surface-based filling-in
and patten completion (Gold, Murray, Bennett,
Sekuler, 2000; Sekuler, Gold, Murray & Bennett, 2000).
Here, we used Mooney faces as stimuli, which do not
contain enough low-level information to be uniquely
processed in a part-based manner (Canas-Bajo &
Whitney, 2020). The pattern completion results found
in the present study cannot be explained by known
contour integration, surface filling-in, or feature-based
pattern completion processes. Interestingly, we found
that the way missing information was filled in was
idiosyncratic only in upright Mooney faces. Mooney
face recognition may therefore be supported by
matching the impoverished images to idiosyncratic
stored templates. Future research should investigate
whether the filled-in or completed regions correspond
to edges of the face (so called “attached-contours,”
after discounting shadows) or whether the classification
image also reveals cast shadows edges (which are
uninformative about the structure of the face; Cavanagh
1991).

Last, we also found weaker but day-to-day consistent
classification images of inverted Mooney faces with
weaker pattern completion and no idiosyncrasies. The
stability of these inverted classification images was
less efficient than for upright faces, which confirms
that our results were not due to a floor effect in the
inverted condition. It also agrees with the idea that
the part-based pathway to face recognition may be
less efficient (Sekuler, Gaspar, Gold & Bennett, 2004).
Mooney faces can occasionally maintain some low-level
features and be partially supported by a combination
of holistic and part-based processing (Canas-Bajo &
Whitney, 2020). This suggests that face templates may
not only support holistic processing of upright faces
but also part-based processing of inverted faces and
perhaps object recognition more generally. This is in
line with previous work that reported templates for
objects (Biederman & Bar, 1999; Rock & DiVita, 1987;
Poggio & Edelman, 1990; Logothetis, Pauls, Bülthoff,
& Poggio, 1994; Tarr, 1995; Tarr & Bülthoff, 1995).

Our results show that classification images may
reveal information about internal stored templates
that are unique to each observer. However, it is worth
noting that the classification images we measured may
have been influenced by nonlinear and decision-related
processes that cannot be discerned from our results
(Murray, 2011; Neri, 2018). Future research should
quantify to what extent an observer’s behavior can be
predicted from their unique classification image and
to what extent a classification image captures aspects
of visual processing that significantly influence an
observer’s trial-by-trial task behavior. Nevertheless,
our results showed that there are significant individual
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differences in observers’ classification images, which
suggest that they may reveal unique information about
the templates that observers putatively use to recognize
Mooney faces.

A long history of computer vision research has
aimed to reproduce the template-matching theory of
face recognition. Turk and Pentland (1991) defined a
computational face recognition system in which faces
are encoded as vectors of weights, called eigenfaces,
and stored in memory. Eigenfaces are a low-cost
representation of faces. When the system encounters
a novel face, recognition occurs through a matching
procedure to the stored eigenfaces—a type of template.
Others have developed Deep Convoluted Neural
Networks models of face recognition that highlight
the need for internal representations to be general and
flexible, so that they can achieve the level of expertise
with familiar and unfamiliar faces that we see in humans
(Blauch, Behrmann & Plaut, 2021; Orru, Marcialis &
Roli, 2020), parallel to the well-known advantage for
familiar faces. This and other computer-vision–based
face recognition research suggests that models that use
template matching can, at least in principle, reproduce
the patterns of human face recognition.

Future research can use our approach to investigate
the origin and development of face templates at
the observer level. The proposed approach of
studying holistic perception using reverse correlation
classification image method is powerful and could
be especially useful in narrowing and identifying
the neural mechanisms of holistic face perception.
Unfortunately, it is a very time-consuming method, but
it can be done within individual observers, as our data
suggests. Future work might therefore be able to use the
technique in combination with electroencephalography,
functional magnetic resonance imaging, and
magnetoencephalography. The technique might also
be useful for evaluating the biological plausibility and
correspondence between face identification algorithms
and holistic face perception by assessing classification
images in both domains.

Altogether, our results provide evidence that
classification images can be used as an unbiased method
to tap into observer-specific internal representations
of faces. Furthermore, the present study provides a
new method for future research to investigate the
nature of face templates, such as understanding how
many templates are required to support our expert
face recognition system (Laurence, Baker, Proietti &
Mondloch, 2021); investigating the plasticity of face
templates over development (de Heering & Rossion,
2008; Laurence, Baker, Proietti & Mondloch, 2021); or
making predictions from an observer’s classification
image of which faces will be more efficiently processed.

Keywords: individual differences, holistic perception,
face recognition, classification images
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