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A B S T R A C T   

Understanding the emotional states of others is important for social functioning. Recent studies show that context 
plays an essential role in emotion recognition. However, it remains unclear whether emotion inference from 
visual scene context is as efficient as emotion recognition from faces. Here, we measured the speed of context- 
based emotion perception, using Inferential Affective Tracking (IAT) with naturalistic and dynamic videos. Using 
cross-correlation analyses, we found that inferring affect based on visual context alone is just as fast as tracking 
affect with all available information including face and body. We further demonstrated that this approach has 
high precision and sensitivity to sub-second lags. Our results suggest that emotion recognition from dynamic 
contextual information might be automatic and immediate. Seemingly complex context-based emotion percep
tion is far more efficient than previously assumed.   

1. Introduction 

Rapid inference about the internal emotional states of others is an 
essential and unique human ability. It is necessary for understanding 
others, interpersonal communication, and adaptive social functioning. 
Impaired emotion understanding is associated with a number of disor
ders, ranging from autism to schizophrenia to depression (Kohler, 
Turner, Gur, & Gur, 2004). The cognitive foundation of emotion un
derstanding rests on our ability to derive and integrate information from 
a variety of cues across different modalities, including but not limited to 
facial expressions (e.g. Calder & Young, 2005; Ekman, 1992;), body 
postures (e.g. de Gelder, de Borst, & Watson, 2015), background scenes 
(e.g. Chen & Whitney, 2019; Righart & de Gelder, 2008), and vocal 
expressions (e.g. Cowen, Laukka, Elfenbein, Liu, & Keltner, 2019). 

Previous research on emotion recognition has disproportionately 
focused on one channel of emotional information: the perception of 
facial expressions. This might be because faces are often thought to be 
attention-grabbing, uniquely salient, or evolutionarily significant 
(Ekman, 1992). The processing of facial expressions has also been 
considered to be rapid, efficient, and automatic (e.g. Fischer & Whitney, 
2011; Poncet, Baudouin, Dzhelyova, Rossion, & Leleu, 2019; Yang & 
Yeh, 2018). However, faces are usually encountered within situational 

contexts in everyday life, and humans can seamlessly integrate contex
tual information in the process of recognizing emotion. For example, 
recent studies show that human observers can readily learn and utilize 
associations between emotion context and neutral stimuli (e.g. Ventura- 
Bort et al., 2016). Sometimes, contextual information can even facilitate 
and speed up the processing of faces when information is limited or 
ambiguous (Falagiarda & Collignon, 2019; Liedtke, Kohl, Kret, & Koel
kebeck, 2018). 

In recent years, an increasing body of research has shown that 
context can influence and modulate the interpreted emotions of facial 
expressions (Barrett, Mesquita, & Gendron, 2011; Wieser & Brosch, 
2012) and this process has been suggested to be fast and automatic. For 
example, visual context can strongly influence perceived emotions from 
facial expressions when the context is irrelevant or subliminally pre
sented (Aviezer, Bentin, Dudarev, & Hassin, 2011; Mumenthaler & 
Sander, 2015). This context effect remains intact even when observers 
are cognitively loaded by a concurrent task (Aviezer et al., 2011). The 
magnitude of this context effect has also been found to correlate with the 
degree of enhancement of an early electrophysiological component 
(Meeren, van Heijnsbergen, & de Gelder, 2005; Righart & de Gelder, 
2006). Despite these advances, contextual information is still often 
regarded as secondary to facial information, mainly incorporated to 
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modulate or disambiguate perceived emotion in faces. 
Although there has been extensive research on perceived emotion 

from faces in the presence of contextual information, and the interaction 
between these sources of information, the inference of emotion from 
context alone in the absence of facial expression has remained largely 
unknown. However, a recent study shows that observers make 
remarkably good predictions of other peoples’ affect (valence and 
arousal) when only the contextual information is available, while the 
face and body are blurred out (Chen & Whitney, 2019). Contextual in
formation alone is therefore sufficient for an accurate interpretation of 
affective state, and the influence of the context on perceived emotion 
can be as substantial as the facial expression itself (Chen & Whitney, 
2019). Context may therefore be a primary cue to emotion, not simply a 
secondary or modulatory cue. 

The primacy and usefulness of context-based emotion perception 
depends on the speed of the available information. If context is as effi
cient (fast) as when the face and body information are present, it would 
suggest that context plays a pivotal and primary role. Previous literature 
has typically regarded the use of context alone, in the absent of overt 
expressions, to be indirect and deliberate because we have to rely on 
abstract causal principles rather than direct perceptual cues (Ekman, 
1992; Skerry & Saxe, 2014). Further, conceptual models of perception 
tend to assimilate context or scene effects only at a relatively late and 
high-level processing stage (Bar, 2004). The implication of these pre
vious studies is that contextual effects on emotion recognition might be 
relatively slow, or at least slower than the recognition of a facial 
expression. This may be, in part, because previous studies used unnat
ural or static stimuli and did not dynamically measure emotion. 

In this paper, we adopted the inferential affective tracking method 
previously introduced in Chen and Whitney (2019) to characterize the 
continuous process of affect inference using dynamic and naturalistic 
stimuli. Here we developed a new analysis approach to measure the 
speed of recognizing emotion from contextual information alone. We 
further provide additional experiments to support and validate the 
precision of this approach. Our method is ideally suited to measure the 
speed of context-based emotion perception in the millisecond (msec) 
range, and it will be useful for quantitative models of emotion 
perception. 

2. Experiment 1 

The goal of experiment 1 was to quantify the speed of inferring 
emotion from contextual information alone, relative to the speed of 
recognizing emotion with all available information including facial 
expression. There are competing hypotheses in this experiment. One 
hypothesis suggests that contextual effects on emotion recognition 
might be relatively slow, in which case one might expect that inferring 
emotion from only contextual information would lag behind recognizing 
emotion with all available information. On the other hand, it is possible 
that contextual information could be processed with a short latency or in 
parallel with facial expression information, in which case the latency of 
inferred emotion perception could be very brief. 

2.1. Method 

2.1.1. Participants 
We tested 90 healthy participants in total (16 male; age range 18–34, 

Mean = 21.0, SD = 4.22). They were students from the University of 
California, Berkeley participating for course credits. All participants had 
normal or corrected-to-normal vision. Informed consent was obtained 
from all participants and the study was approved by Institutional Review 
Board at the University of California, Berkeley. 

2.1.2. Stimuli 
We made use of a publicly available stimulus set from Chen and 

Whitney (2019). The stimulus set was originally made for experiments 

that assessed the unique contribution of context versus face and body 
information in emotion recognition. The stimuli consisted of 34 silent 
(no audio) video clips derived from Hollywood movies, home videos and 
documentaries. The lengths of the videos ranged from 36 s to 160 s, 
totaling 2749 s for all videos. The resolution of the videos was 1280 ×
720 and the frame rate was 30 frames per second. The original silent 
videos with all visual information visible were defined as the “fully 
informed” condition (see Fig. 1A). For each video, we selectively masked 
the face and body of a target character, frame-by-frame, with a Gaussian 
blurred mask, to generate stimuli for the 

“context-only” condition (see Fig. 1B). In the context-only condition, 
the target character was never visible. The blurred mask appeared in the 
videos an average of 77.1% (SD = 19.1%) of the time. During the period 
when the blurred mask was present, the mask area covered an average of 
31.5% (SD = 11.6%) of the entire frame. 

To effectively evaluate tracking performance, we used video clips 
that contained variations in emotion. This means that many videos in 
our dataset contained more than 1 emotion and some transitions from 
positive to negative emotions or from negative to positive. In most of the 
clips, the affect was quite heterogeneous (see Fig. S1, supplemental 
materials). 

2.1.3. Procedure 
Participants completed the experiment on a custom-made website 

online. The videos were presented to participants in a random order. 
Half of the videos that each participant viewed were from the fully 
informed condition and the other half from the context-only condition. 
Although it is slightly more complex, this mixed within-subject design 
has several advantages. First, every participant viewed a given video in 
either the fully informed or the context-only condition, but not both 

Fig. 1. Experimental conditions and data from a single example video in 
Experiment 1. (A) Participants viewed a silent movie clip while continuously 
reporting the valence and arousal of a specified character in the video. In the 
fully informed condition, participants were asked to track the affect of the 
target character (outlined in gray) when everything was visible. Due to copy
right restrictions, the example video frame here is for visualization purposes 
only; the full set of videos is available here: https://osf.io/f9rxn/. (B) In the 
context-only condition, participants tracked the blurred target (outlined in red) 
while the context remained visible. (C) Example raw context-only valence 
ratings of the invisible target (red curve, n = 41 participants) appear to follow a 
similar time-course as the fully informed valence ratings of the visible target 
(gray curve, n = 42 independent participants). The data here are for one single 
video; a total of 34 videos were tested. Shaded regions represent bootstrapped 
95% confidence intervals. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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conditions, which avoided any memory or interference effects between 
conditions. Second, this design controlled for subject-specific sources of 
noise such as network latency or monitor settings. As a result of the 
random assignment of videos to different conditions for each subject, 
different videos in the same condition may have had a slightly different 
number of participants assigned (within +/− 1 participant). On average, 
for every video in either the fully informed condition or the context-only 
condition, we collected affect ratings from 45 participants. To record 
real-time affective judgments, a 2D valence-arousal affect rating grid 
was superimposed on top of the video (Fig. 1A & 1B). Participants were 
required to position the mouse at the center of the affect rating grid 
before the video presentation. As participants watched each video, and 
in real-time, they were instructed to move a mouse pointer within the 
affect rating grid to continuously report the valence and arousal of the 
(blurred or visible) target character in the video. The mouse position was 
recorded every 20 milliseconds (50 Hz). After a video ended, partici
pants were asked whether they had seen the video prior to the experi
ment, and they rated their level of familiarity with the video clip on a 
scale from 1 (Not at all familiar) to 5 (Extremely familiar). Participants 
were also asked whether the video played smoothly. 

To estimate the noise ceiling in our data, 52 participants were asked 
to rate a random subset of video clips twice. The second rating was 
collected approximately 1 h after the first rating of the clip. The mean 
correlation coefficients between the initial ratings and the repeated 
ratings was used as the noise ceiling to normalize cross-correlation 
coefficients. 

2.1.4. Data analysis 
We confirmed that participants reported smooth video playback in 

98.4% of the trials and the remaining 1.6% of trials were removed from 
the analysis. We also confirmed the exclusion of these 1.6% of trials did 
not change the results. We obtained mean affect ratings for every video 
under each condition by averaging across responses from all partici
pants. This helps reduce noise in the data that is caused by idiosyncrasies 
from individual participants. We then used a cross-correlation analysis 
to detect the time lag between the mean fully informed affect ratings and 
the mean context-only affect ratings. Many studies on perception, per
formance, psychophysiology, and neuroscience use time-lagged cross- 
correlation analysis to assess the similarity and synchrony relationship 
between pairs of time series or signals (Dean & Dunsmuir, 2016). Cross- 
correlation is measured by incrementally shifting one signal in time and 
repeatedly calculating the correlation between two signals (see Fig. S2, 
supplemental materials). We used this technique to compare the 
emotion inferred when all information is available with the emotion 
inferred when only context information is available. The temporal offset 
at which the two signals are most synchronized (correlated) indicates 
the difference in perceptual latency between the context-only and fully 
informed conditions. 

Time series analysis requires the series to be stationary (Shumway & 
Stoffer, 2014), which is defined as having constant statistical (e.g mean 
and variance) properties that do not change over time. We transformed 
our time series data to be stationary by applying differencing (Sims, 
1988), which involves subtracting every value xt from xt+1 to obtain 
successive differences between adjacent values in time. The Dickey- 
Fuller test confirmed that all transformed/differenced time series were 
stationary. 

For every video, we computed the cross-correlation function (CCF) 
between the context-only and the fully informed condition using the 
differenced affect ratings. We applied Fisher z transformation on the 
CCFs and averaged the transformed z values to obtain the mean Fisher z. 
transformed CCF. We then estimated the noise ceiling by computing the 
CCFs between initial and repeated differenced ratings made by the same 
subject. These CCFs were also transformed to Fisher z values and aver
aged to obtain the mean Fisher z transformed CCF across videos. The 
peak Fisher z value of the mean transformed CCF between initial and 
repeated ratings was identified as the noise ceiling. We then divided the 

mean Fisher z transformed CCF between the context-only and the fully 
informed condition by this noise ceiling, and inverse transformed the 
normalized Fisher z back to Pearson r values, in order to obtain the 
normalized mean CCF across all videos. We then fit a skew-Cauchy 
distribution (Bahrami, Rangin, & Rangin, 2010) to the mean normal
ized CCF in order to capture the shape of the CCF. We confirmed that all 
skew-Cauchy curve fitting reached successful convergence to the 
optimal parameter values to ensure goodness of fit. We measured the 
time lag of the context-only condition by identifying the lag that has the 
highest correlation value along the skew-Cauchy curve fitted on the 
mean normalized CCF. The measured time lag was based on the mean 
CCF across videos because the focus of our study is on the temporal 
characteristics of context that are general to all video stimuli but are not 
specific to a single stimulus. The normalizing procedure by using the 
noise ceiling did not affect the result of time lag detection because the 
same noise ceiling was uniformly applied to cross correlation values of 
all time lags. 

There is inevitable temporal dependency in the time series data 
because our method involved continuous affect ratings collected while 
viewing dynamic videos. Therefore, we did not use parametric tests (e.g. 
ANOVA and t-test) to evaluate statistical significance, because they 
make assumptions about the data and its distribution, which would 
often not hold true for our continuous data. Instead, we used non- 
parametric resampling (e.g. bootstrapping) and Monte Carlo permuta
tion methods to generate null distributions and confidence intervals. To 
generate null distributions for CCFs, trial labels (whole continuous se
quences of ratings) were shuffled (time points were not shuffled) and the 
CCF was calculated between affect ratings from randomly paired videos 
with different target characters. This permutation method preserved the 
exact temporal structure and autocorrelations inherent to the contin
uous ratings but not any clip-specific information. We estimated the 
bootstrapped confidence intervals by randomly sampling the CCFs of 
individual videos with replacement, recalculating the mean CCF across 
sampled videos and reidentifying the peak lag (that has the highest 
correlation value) from the bootstrapped mean CCF. This process was 
repeated 10,000 times to generate bootstrap distributions for the mean 
CCF and its peak lag; 95% confidence intervals were calculated based on 
the bootstrapped distributions. 

As autocorrelation in time series could lead to spurious correlations, 
prewhitening has been proposed as a preprocessing step before calcu
lating cross-correlation functions to further remove autocorrelation in 
time series (Shumway & Stoffer, 2014). Prewhitening is typically per
formed by fitting autoregressive integrated moving average (ARIMA) 
models to original time series and separating out the time series of re
siduals from the original series as the prewhitened series. Prewhitening 
has been shown to be effective when applied to some cases (Dean & 
Dunsmuir, 2016; Probst, Stelzenmuller, & Fock, 2012), while it is not 
always informative and can be detrimental in other cases (Bayazit & 
Önöz, 2007; Razavi & Vogel, 2018). In a separate analysis, we applied 
prewhitening to the differenced time series and confirmed that our basic 
results remained consistent whether or not it was applied. 

2.2. Results 

We calculated the skew-Cauchy fitted mean CCF between the 
context-only affect ratings of the invisible target character and the fully 
informed affect ratings of the visible target character (e.g., the cross 
correlation between the red and gray data in Fig. 1C). This reveals the 
relative delay between the use of contextual information alone and the 
use of all available information including the face and body. We 
observed a significant peak normalized cross-correlation between 
context-only and fully informed ratings (red line in Fig. 2A; mean r =
0.52, bootstrapped 95% CI: 0.38–0.65; p < 0.001, permutation tests), 
which confirmed that context information alone is indeed informative 
when inferring the affect of invisible characters. It is noteworthy that the 
fully-informed and context-only ratings were made by different groups 
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of independent participants, so the cross correlation is not confounded 
by within-subject dependence or memory. 

More importantly, we found that the peak of the skew-Cauchy fitted 
mean CCF had effectively zero time lag (Fig. 2A). We estimated the 
variability of the measured time lag using bootstrapping, which revealed 
no substantial lag (Fig. 2B and red shaded area in Fig. 2A, mode lag: 0 
msec, mean lag: − 33 msec, bootstrapped 95% CI: − 240 to 60 msec). 
These results suggest that, on balance, context information alone is used 
nearly as fast as having additional facial expression information for 
emotion perception. 

3. Experiment 2 

The temporal cross-correlation analyses in Experiment 1 revealed 
that using context information alone added no substantial processing 
delay compared to using information that includes the face. Contextual 
information is therefore sufficient to perceive emotion with very little if 
any delay. However, one might wonder whether our inferential emotion 
tracking method or the cross-correlation approach have enough preci
sion to detect a time lag if it is indeed present. We designed experiment 2 
to test the precision of our method for detecting the temporal lag in 
tracking emotion continuously. We inserted a small lag (100 msec in 
Experiment 2a and 200 msec in Experiment 2b) in the video stimuli to 
create physically lagged conditions. We expected to find a significant 
time lag when cross-correlating between the affect ratings of the lagged 
condition and those of the no-lag condition. 

3.1. Method 

3.1.1. Participants 
In total, we tested 80 healthy participants in Experiment 2a (18 male; 

age range 18–26, Mean = 20.2, SD = 1.48) and 76 healthy participants 
in Experiment 2b (21 male; age range 18–23, Mean = 20.1, SD = 2.43). 
Participants in Experiment 1, 2a, and 2b did not overlap. They were 

students from the University of California, Berkeley participating for 
course credits. All participants had normal or corrected-to-normal 
vision. Informed consent was obtained from all participants and the 
study was approved by Institutional Review Board at the University of 
California, Berkeley. With this sample size and the statistical effect we 
observed in this study, we can reach a power of over 0.9 with an alpha 
value of 0.05. 

3.1.2. Stimuli 
The stimuli in the “no-lag” condition were identical to the fully 

informed condition in Experiment 1 (Fig. 3A). In a separate condition, 
we edited these video stimuli by inserting a lag (100 msec in Experiment 
2a and 200 msec in Experiment 2b), close to the start of each video; 
these were the “lagged” conditions (Fig. 3B). To insert the lag, we 
selected a random video frame between the first 5 to 10 s of each video, 
and we repeated the same frame for 100 (or 200) msec. The remaining 
frames in each video were therefore lagged by 100 (or 200) msec 
compared to the no-lag condition. Any fluctuations in timing could only 
add noise and reduce the measured precision but could not introduce a 
systematic lag between conditions. 

3.1.3. Procedure 
The procedure was identical to Experiment 1. The videos were pre

sented to participants in a random order, with half of them from the 
lagged condition and the other half from the no-lag condition. Experi
ment 2 also used a mixed within-subject design because every partici
pant viewed the same video in either the lagged or the no-lag condition, 
but not both conditions. On average, for every video in either the lagged 
condition or the no-lag condition, we collected affect ratings from 40 
participants in Experiment 2a and 38 participants in Experiment 2b. The 
mouse position was recorded every 20 msec (50 Hz) in Experiment 2a 
and every 100 msec (10 Hz) in Experiment 2b. 

Fig. 2. Results of Experiment 1. Skew-Cauchy fitted cross correlation functions (CCF) for detecting a time lag between conditions. (A) Skew-Cauchy fitted cross 
correlation functions (CCF), between context-only affect ratings of the invisible target and fully informed affect ratings of the visible target, as a function of the time 
displacement/lag between them (solid black line). The shaded gray region around the black lines represents bootstrapped 95% confidence intervals of mean cross 
correlation coefficients averaged across clips and targets. The red shaded area represents bootstrapped 95% confidence intervals of measured peak lags identified 
from the skew-Cauchy fitted CCF. The dashed line near (near zero, in the inset plot) represents the permuted null cross correlation functions generated by shuffling 
the video clip labels of continuous ratings. (B) A violin plot of the measured time lags in the context-only condition estimated by bootstrapping the peak of the CCF in 
panel A. The peak delay is narrowly tuned and clustered around zero lag. Error bars represent bootstrapped 95% confidence intervals of the mean measured time lag 
(same as the red region in panel A). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.1.4. Data analysis 
The affect ratings collected for the first few seconds before the 100 

(or 200) msec lag was introduced were removed from the cross- 
correlation data analyses. The truncated affect ratings were processed 
in the same way as Experiment 1. To examine the reliability of our lag 
detection method, we split the data in the no-lag condition into two 
halves and computed the cross-correlation between the mean ratings 
obtained from the two halves of data. We expected to find a narrowly 
tuned zero time lag in this (0 msec) condition. To further demonstrate 
the precision of our method, we quantified the relationship between 
measured time lag and physical time lag by fitting a linear regression 
function on every bootstrap iteration using the data from 0 msec, 100 
msec and 200 msec. We expected the fitted linear regression function to 
have a slope close to 1 if the peak lag measured using our method 
matched the inserted physical lag. 

3.2. Results 

We calculated the skew-Cauchy fitted mean CCF between the no-lag 

affect ratings of the visible target character and the lagged affect ratings 
of the same character. We confirmed that the peak normalized cross- 
correlations between no-lag and lagged ratings were high for both 
Experiment 2a (peak of the black line in Fig. 4A; mean: 0.75; boot
strapped 95% CI: 0.58–0.86; p < 0.001, permutation tests) and 2b 
(mean: 0.76; bootstrapped 95% CI: 0.56–0.87; p < 0.001, permutation 
tests). 

More importantly, the peak of the skew-Cauchy fitted mean CCF is 
clearly shifted from zero time lag (see the peak of the black line in 
Fig. 4A). For Experiment 2a, where we inserted a 100 msec time lag in 
the videos, we detected a significant time lag in the affect ratings (mode: 
− 100 msec; mean: − 87 msec; bootstrapped 95% CI: − 160 to − 20 msec; 
minus sign represents a lag instead of a lead; see the blue violin plot in 
Fig. 4B). In Experiment 2b, where we inserted a 200 msec time lag in the 
videos, we detected a significant time lag in the affect ratings (mode: 
− 200 msec; mean: − 193 msec; bootstrapped 95% CI: − 300 to − 100 
msec; the green violin plot in Fig. 4B). When we split the no-lag ratings 
into two halves (Monte Carlo) and compared them using cross- 
correlation (the 0 msec condition), we verified that the measured time 
lag was narrowly tuned to zero (mode: 0 msec; mean: − 4 msec; boot
strapped 95% CI: − 20 to 20 msec). 

To show that our method can distinguish a 100 msec lag from a 200 
msec or a 0 msec one, we quantified the effect size (Cohen’s d) for the 
difference in measured time lags between lag conditions (Fig. 4b). We 
found a Cohen’s d of 3.38 between the 0 msec and the 100 msec lag 
conditions, a Cohen’s d of 1.71 between the 100 msec and the 200 msec 
lag condition, and a Cohen’s d of 3.51 between the 0 msec and 200 msec 
lag condition. These Cohen’s d values all indicate very large effect sizes 
(Cohen, 2013). Furthermore, we found that the linear regression func
tion fitted on the bootstrapped distributions of 0 msec, 100 msec and 
200 msec data has a mode slope of 1 (see the black diagonal fitted 
regression line in Fig. 4C), which shows that that the measured time lag 
using our method matches the physical lag inserted. These results sug
gest that our method can resolve lags as small as 100 msec or less with 
high precision. 

We also compared the measured time lag in the context-only con
dition in Experiment 1 (Fig. 2B) to that of the 0 msec, 100 msec and 200 
msec lag conditions in Experiment 2 (Fig. 4). As a reminder, the 
measured time lag in the context only condition was near zero (Fig. 2B). 
We found a Cohen’s d of 0.75 between this context-only condition and 
the 100 msec lag condition, and a Cohen’s d of 1.77 between the context- 
only condition and the 200 msec lag condition. These Cohen’s d values 
indicate medium to large effect sizes (Cohen, 2013). Because we have 
obtained the bootstrapped distribution of measured lags for 0 msec 
(Fig. 4C, gray dot cloud), 100 msec (Fig. 4B, blue dot clouds) and 200 
msec (Fig. 4C, green dot clouds) lag conditions, we computed the Bayes 
factor to evaluate which of these distributions fits the context-only dis
tribution (Fig. 4C, red dot cloud) the best. We found a Bayes factor 
(BF12) of 5.11 in the comparison between the 0 msec (H1) and the 100 
msec (H2) distributions, and a Bayes factor (BF12) of 9.78 in the com
parison between 0 msec (H1) and the 200 msec (H2) distributions. These 
Bayes factors suggest moderate (Lee & Wagenmakers, 2014) to sub
stantial (Jeffreys, 1961; Kass & Raftery, 1995) statistical evidence in 
favor of the 0 msec (H1) distribution compared to the 100 msec or the 
200 msec (H2) distributions. Although the labelling of Bayes factors 
varies slightly across different references (Jeffreys, 1961; Kass & Raf
tery, 1995; Lee & Wagenmakers, 2014), we opt to focus the literal 
interpretation of the Bayes factors, the fact that the measured time lag in 
context-only condition is 5.11 times more likely to be under to the 0 
msec lag distribution than the 100 msec lag distribution. The Bayes 
factors show that latency of context-only affect perception is much more 
likely to be drawn from a population with 0 msec lag than a population 
with 100 or 200 msec lag, confirming that the context information is 
available with a remarkably short latency. 

Fig. 3. Experiment 2a design and approach for an example video. (A) In the no- 
lag condition, participants viewed the original fully informed videos while 
tracking the valence and arousal of the target character. (B) In the lagged 
condition, participants viewed fully informed videos with a 100-msec time lag 
inserted at a random time after viewing the first 5–10 s of the video. To insert 
the time lag, we repeated the same video frame for 100 msec. As a result, all the 
video frames after the repeated frame lagged behind the no-lag condition by 
100 msec. Experiment 2b had the same experimental design as Experiment 2a 
except that the lag inserted was 200 msec. (C) Example raw lagged valence 
ratings of the target (blue curve) relative to the no-lag valence ratings of the 
target (gray curve), for one example video. The example ratings for the no-lag 
condition have data from 35 participants and the example ratings for the lagged 
condition have data from 36 participants. Shaded regions represent boot
strapped 95% confidence intervals. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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4. Discussion 

Our results provide the first measure of the speed of context-based 
dynamic emotion perception and show that the context is processed 
with a remarkably short latency, essentially as fast as using all available 
information including facial expressions. Our continuous inferential 
affective tracking technique (IAT), in combination with cross- 
correlation analysis (Experiment 1), has high precision in detecting a 
sub-second temporal lags as established by empirical experimental 
manipulations (Experiment 2). These results contrast with previous 
theories of inferred emotion from context, which implicitly or explicitly 
suggest that perceiving emotion from context is slower than emotion 
directly from faces (Bar, 2004; Skerry & Saxe, 2014). Our results support 
the alternative view that emotion from dynamic contextual information 
might be automatic and immediate. Seemingly complex context- 
dependent emotional inference and recognition is far more efficient 
than previously assumed. 

The dynamic tracking method itself does not set limits on the pre
cision of detecting a time lag between conditions. Although participants’ 
affect ratings could be sluggish because of a large latency in the motor 
movement or mouse kinematics, this applies to all conditions (fully 
informed, and context-only). These sources of latency and temporal 
blurring do not affect our speed measurement because we focused on the 
difference between conditions, and the motor latency, for example, 
would therefore cancel-out in the comparison. Despite the 10 and 50 Hz 
sampling rate of the behavioral data, comparing between conditions can 
reveal a reliable temporal lag of 100 msec or less. Averaging across 
trials, for example, allows one to measure temporal differences in re
action time much finer than the resolution of the device itself (e.g., 
Donders, 1969). 

Although the current study only concerns valence and arousal, our 
tracking method has also been demonstrated with ratings in discrete 
emotion categories rather than affect (Chen & Whitney, 2020). The 
tracking method was adapted from IAT and it was called inferential 

emotion tracking (IET). With IET, we showed that context remains 
essential for emotion recognition regardless of whether the emotion is 
reported as dimensional or categorical. Based on the current study, it is 
therefore plausible that context information is used very quickly for both 
affective and categorical emotion perception. 

It is worth noting that the striking findings in this study are related to 
the failure to demonstrate a consistent lag between conditions different 
from zero. It is unquestionable that one cannot conclude that the null 
hypothesis is true when one fails to reject it. This is where Experiment 2a 
and 2b come in, to guide our interpretation of the measured CCF lag in 
Experiment 1, by showing that our method can reliably detect a sub- 
second lag. One possibility is that the time lag between fully informed 
and context-only affect ratings is smaller than the limit that we have 
tested (< 100 msec). Another possibility is that Experiment 1 involves a 
comparison between different conditions, which is inherently noisier 
than a comparison within the same condition. With the above con
straints considered, we can still safely conclude that emotion inferred 
from context information alone does not yield a time lag as strong and 
consistent as the 100 msec lag tested in Experiment 2a. Context infor
mation is therefore available as early as any emotion-related visual in
formation, and it has a very fast influence on perceived affect. 

Although our study has shown that inferring emotion from only 
contextual information is processed with little delay, our results do not 
speak to what specific information in the context-only condition is 
essential for such fast emotion inference. The information in blurred 
masks on its own contains some colour or residual outline motion, but 
that cannot be used to perceive emotion accurately, as previously 
demonstrated (Chen & Whitney, 2019). However, the blurred mask is 
embedded in the scene context and it may interact with the context in a 
way that provides useful information. Scenes with other characters as 
part of the context may provide more information to allow for faster 
inference of emotion. However, we did not find a large or easily inter
pretable difference in measured time lag between videos with one 
character only or with more than one character (see Fig. S3, 

Fig. 4. Results of Experiment 2. (A) Experiment 2A: skew- 
Cauchy fitted CCF (solid black line) between lagged (− 100 
msec) affect ratings of the target and no-lag affect ratings of 
the target as a function of the time displacement/lag between 
them. Blue shaded area represents bootstrapped 95% confi
dence interval of measured time lags identified from the skew- 
Cauchy fitted CCF. The dashed line (inset) represents the 
permuted null cross correlation functions generated by shuf
fling the video clip labels of continuous ratings. Shaded gray 
region around black lines represents bootstrapped 95% con
fidence intervals of mean cross correlation coefficients aver
aged across clips and targets. (B) Violin plots of the measured 
time lags for Experiment 2a (− 0.1 s physical lag in blue), 
Experiment 2b (− 0.2 s physical lag in green), and the split-half 
analysis (0 s physical lag in gray). Error bars represent boot
strapped 95% confidence intervals of the mean measured time 
lag (same as the blue region in panel A). (C) The fitted linear 
relationship between physical time lag inserted in videos and 
measured time lag using our cross-correlation method. Gray 
shaded region shows the 95% confidence intervals of fitted 
linear regression functions using the bootstrapped data from 0 
msec, 100 msec lag and 200 msec lag conditions. We then 
predicted the physical time lag of the context-only condition 
using the fitted linear regression function and the measured 
time lag of the context-only condition from Experiment 1 (in 
red). The measured and the predicted physical time lag for the 
context-only condition are both located closer to the measured 
time lags of the 0 msec condition than the 100 or 200 msec lag 
conditions. Data points are jittered for visualization purposes. 
(For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this 
article.)   
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supplemental materials). The overall valence of the affect ratings also 
did not change the results much: the relative latency of inferential 
emotion tracking was near zero for videos that were relatively more 
positive or negative (Fig. S4, supplemental materials). One might expect 
that familiarity with video content might play a role in determining the 
lag. We therefore analyzed the data excluding trials in which partici
pants reported familiarity with the video. We found that the IET latency 
was similar regardless of familiarity with the videos (Fig. S5, supple
mental materials). 

Our findings are consistent with and extend a large body of work 
showing that the perceptual organization and integration of visual 
contextual information is fast and automatic. There are many exten
sively investigated visual processes that require the integration of some 
form of visual context and they have been suggested to be pre-attentive 
and automatic (for a review see Albright & Stoner, 2002). These rapid 
processes include but are not limited to analysis of shadows (Rensink & 
Cavanagh, 2004), perceptual filling-in (Mattingley, Davis, & Driver, 
1997), texture segmentation (Zhaoping, 2000), figure-ground segrega
tion (Kimchi & Peterson, 2008), etc. The perception of facial attributes 
such as expressions and attractiveness is also influenced by the context 
of other faces presented in the recent past or simultaneously (e.g. Lib
erman, Manassi, & Whitney, 2018; Wedell, Parducci, & Geiselman, 
1987). Some studies have shown that neurons at early stages of cortical 
processing are involved in detecting contextual cues and representing 
the modulated information (Albright & Stoner, 2002). This evidence 
suggests that context-based processing could be primitive and efficient. 
Our results extend this to the some of the highest levels of visual 
cognition, including inferential emotion perception. 

Our findings speak to the question of what enables emotion inference 
from context to be so fast. Context could be faciliatory for emotion 
recognition in a temporal and spatial manner. Emerging evidence in 
neuroscience supports that the human brain performs mental inference 
based on predictive encoding (Friston, 2010). This account has subse
quently been extended to social and emotion perception (Otten, Seth, & 
Pinto, 2017). According to this account, extracting sequential regular
ities embedded in the temporal context to form predictions about up
coming events is an essential cognitive and neural process. These 
sequential regularities in the recent past can serve as the temporal 
context to constrain and shape inferences of others’ emotions (Kimura, 
Kondo, Ohira, & Schröger, 2012). Similarly, spatial context may contain 
heuristics based on behavioral regularities in the social environment, 
which can then provide shortcuts for emotion processing (Marsh, 2002). 
For example, emotions like panic tend to spread in crowds, and get 
intensified beyond what any individual face can signal. Furthermore, 
detailed contextual information may facilitate the understanding of 
others’ emotional states by actively engaging other empathic and 
interoceptive processes (Melloni, Lopez, & Ibanez, 2014). 

Our results have implications for the underlying neural mechanisms 
of emotion perception. A common view is that contextual information 
modulates the neural processing of facial expressions through feedback 
connections (Wieser & Brosch, 2012). Our study suggests an alternative 
possibility, albeit speculative, that there might be a parallel pathway, 
independent of the pathway of facial analysis, for processing and 
extracting affective information from visual background context. This 
context-pathway is supported by work showing that independent and 
unique variance in emotion perception is carried by face and contextual 
information (Chen & Whitney, 2019) and it would likely involve brain 
regions that support the analysis of objects, scenes, bodies, and actions 
that constitute the interpretation of visual context. Using our approach, 
future neuroimaging experiments could generate encoding and decod
ing models to isolate the neural mechanism of context-based emotion 
perception. 

Taken together, our findings reinforce the idea that context plays a 
critical role in supporting the rapid and robust understanding of others’ 
emotion. This has practical implications for affective computing, which 
stresses the importance of fast and accurate emotion recognition. In light 

of our results, the implementation of a context processing stream should 
not be regarded as peripheral and superfluous, but rather essential. 
Emotion inference from context is a seemingly complex and challenging 
problem as visual scene context is heterogenous and the processing of it 
seems computationally expensive. However, we have shown that the 
human brain resolves it with remarkably speed and efficiency in a 
relatively effortless manner. To understand and exploit the brain’s full 
potential in the realm affective computing, it is therefore important to 
shift our focus towards studying the cognitive and neural mechanisms 
underlying context-based emotion perception. 
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Fig. S1. The distribution of valence (A) and arousal (B) ratings in all 34 video clips. To 

effectively evaluate tracking performance, we used video clips that contained variations in 

emotion. This means that many videos in our dataset contained more than 1 emotion and some 

transitions from positive to negative emotions or from negative to positive. To quantify this, we 

averaged the valence/arousal ratings of the target character within every 1-second bin along the 

time course of every video. The violin plots show the distribution of valence and arousal for all 

binned time points within a given video (34 videos in total). In most of the videos, the affect was 

quite heterogeneous. 

 

 



 



Fig. S2. Calculating a cross correlation function (CCF) to measure lag in emotion tracking. (A) 

We obtained mean affect ratings for each individual video in each condition by averaging across 

responses from all participants. The visualizations here are for one single video; the same 

analysis was performed all 34 videos. (B) We then transformed the data for each video to make it 

stationary by applying differencing (Sims, 1988), which involves subtracting every value xt from 

xt+1 to obtain successive differences between adjacent values in time. As an alternative, 

establishing stationarity with a pre-whitening approach (Shumway & Stoffer, 2011) did not 

change the results. The validity of the approach is confirmed by the near flat and zero CCF 

functions in the permuted null distributions (see Fig. 2A). (C, D, E, F) We computed the 

correlation coefficient between ratings from both conditions after shifting one series of ratings 

with different time displacement relative to the other. (e.g. -2 sec for D, 0 sec for C, 2 sec for E). 

This was performed for all possible time displacements to obtain the continuous cross correlation 

function in F for every video. (G) The CCFs for individual videos are averaged to obtain the 

mean CCF across videos. A skew-Cauchy distribution (Bahrami, Rangin, & Rangin, 2010) was 

fit to the mean CCF in order to capture the shape of the CCF and the time lag that has the highest 

correlation. 

 

  



 

Fig. S3. Violin plots of the measured time lag in the context-only condition (Experiment 1) using 

all videos (n = 34), videos with only one character (n = 9), and videos with one or more 

characters (n = 25). We split the video clips into two groups depending on whether there was a 

partner character shown in the context, and we quantified the measured peak lags in that subset 

of videos. We found that in both sets of the videos, the distribution of measured time lags was 

near zero and it did not show a clear trend for substantial lags.  

  



 

Fig. S4. The distribution of measured time lags in the context-only condition (Experiment 1) for 

the subsets of videos with relatively negative or positive valence. We split the video clips into 

two halves depending on whether affect ratings of the target characters were, on average, more 

negative or positive. We then quantified the measured time lags in these two groups of videos. 

We found that in both halves of the videos, the distribution of measured time lags was near zero. 

 

  



 
Fig. S5. The distribution of measured time lags for all experiments. On average, in 87% of all 

trials, participants reported that they had not seen the video content before participating in the 

experiments. We analyzed the data excluding trials in which participants reported familiarity. 

The distribution of measured time lags are similar to results obtained with data with no 

exclusion. 
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