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A vast amount of information is 
available to the visual system at any given 
moment. Processing the billions of bits of 
information on the retina is a monumental 
challenge, but the way in which the brain 
accomplishes this is not via brute force. 
Numerous studies have unequivocally dem-
onstrated that the brain has severe process-
ing limitations, resulting in a sparse repre-
sentation of our environment (e.g. visual 
short term memory, change blindness, mul-
tiple object tracking, attentional blink; Luck 
& Vogel, 1997; Raymond, Shapiro, & Ar-
nell, 1992; Rensink, ORegan, & Clark, 
1997; Scholl & Pylyshyn, 1999; Simons & 
Chabris, 1999). To surmount some of these 
limitations and lighten the computational 
load, the brain utilizes numerous heuristics. 
Such heuristics or assumptions are learned 
over time because of the predictability and 
stability of the visual world, and they work 
well enough. Rather than generating high 
fidelity representations of everything within 
our field of view, our brains exploit the 
world’s statistical regularity to condense in-
formation. The leaves of a tree, the blades of 
grass, the tiles of the floor are redundant, 
giving rise to the percept of ‘tree-ness,’ 

‘lawn-ness,’and ‘floor-ness,’ respectively. 
The individual components of those textures 
are lost in favor of a concise, summary sta-
tistical representation.  
 The concept of summary representa-
tion has recently generated significant inter-
est and debate within the vision science 
community (Alvarez & Oliva, 2008, 2009; 
Ariely, 2001, 2008; accompanying paper, 
2005a, 2005b; de Fockert & Marchant, 
2008; Haberman & Whitney, 2007, 2009; 
Koenderink, van Doorn, & Pont, 2004; My-
czek & Simons, 2008; Simons & Myczek, 
2008). Also sometimes called ensemble cod-
ing or ensemble perception, summary repre-
sentation refers to the idea that the visual 
system naturally represents sets of similar 
items (such as blades of grass) using sum-
mary statistics. Such a system is intuitively 
appealing and has far-reaching implications. 
Chong and Treisman (2003), and more re-
cently we (Haberman & Whitney, 2009) and 
other authors even suggest that summary 
representation can provide coarse informa-
tion from sources across our entire visual 
field, driving the compelling impression that 
we have a complete and accurate picture of 
our visual world (accompanying paper; 
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Haberman & Whitney, 2009). Thus, the 
‘Grand Illusion’ (Noe, Pessoa, & Thompson, 
2000) may not be an illusion at all, but 
rather a noisy summary representation of all 
that we survey. Many of the individual de-
tails of a scene are inaccessible, but the 
‘gist’ is ever-present. Ensemble coding 
serves as a computationally inexpensive 
means of obtaining valuable information 
about a scene. Put another way, ensemble 
coding may provide a viable algorithm that 
drives gist perception.  
   The concept of ensemble representa-
tion is not a new one. Aristotle described 
perception as a ‘mean’ of sensory inputs, 
which could be used to identify stimulus 
changes as the ‘sense-organ’ gathered more 
information. Extensive psychophysical work 
since the 1980’s has demonstrated that the 
visual system averages position (Morgan & 
Glennerster, 1991; Morgan, Watamaniuk, & 
McKee, 2000), direction of motion 
(Watamaniuk, Sekuler, & Williams, 1989; 
Williams & Sekuler, 1984), speed 
(Watamaniuk & Duchon, 1992), and orien-
tation (Dakin & Watt, 1997; Morgan, 
Chubb, & Solomon, 2008; Motoyoshi & 
Nishida, 2001; Parkes, Lund, Angelucci, 
Solomon, & Morgan, 2001). The neural 
mechanisms that subserve ensemble percep-
tion may be straightforward. Perceiving the 
average direction of motion from a set of 
moving dots (or blowing snow), for exam-
ple, is consistent with established physio-
logical mechanisms of motion perception 
(Britten & Heuer, 1999; Britten, Shadlen, 
Newsome, & Movshon, 1992; Newsome & 
Pare, 1988); information may be pooled 
across low-level motion detectors operating 
in parallel, potentially obviating the in-
volvement of serial attention (Watamaniuk 
& McKee, 1998; but see also Bulakowski, 
Koldewyn, & Whitney, 2007). Rather than 
perceiving each moving dot individually, the 
dominating percept is the average direction 
of motion.  

More recent—and controversial—
work has suggested that humans also derive 
a summary representation for the size of a 
set of arbitrary objects (Ariely, 2001; ac-
companying paper, 2005a, 2005b), and that 
this summary representation is favored over 
a representation of the individual items 
composing the set. Some researchers argue 
that perceiving the average size is a parallel 
process (Ariely, 2001; accompanying pa-
per), similar to distinguishing two textures. 
This raises several interesting questions, in-
cluding: Are there low-level feature detec-
tors designed to operate on object size in a 
manner akin to motion or orientation? If not, 
how does average size perception, if it is 
indeed parallel, bypass traditional limita-
tions of serial attention? Are there other ex-
amples of ensemble coding that extend be-
yond low-level stimuli (i.e. motion, orienta-
tion, size)? 
 Although open questions remain 
(some of which are addressed below), it is 
clear that ensemble coding is connected to 
several areas of vision science, and this, in 
part, explains the growing interest in sum-
mary statistical perception. In addition to 
providing a window on “gist,” ensemble 
perception has implications for the way we 
understand visual search, texture, depth, 
scene perception, object recognition, and 
spatial vision. Because of its far-reaching 
and potentially controversial implications, 
research on ensemble perception is rapidly 
expanding. The remainder of this review 
surveys the history of this subfield, dis-
cusses ongoing debates, highlights in greater 
detail some of the more influential work, 
and speculates as to where future work 
should be directed. 
 
Survey of Summary Statistical Perception 
   Although it was not always referred 
to as ensemble or summary statistical per-
ception, this phenomenon has implicitly 
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been examined in some form since the early 
20th Century. Gestalt grouping (Wertheimer, 
1923) may be viewed as an early conceptu-
alization of summary representation. The 
Gestaltists viewed emergent object percep-
tion as a synergy of lower-level inputs; the 
final percept was more than the sum of its 
parts. Researchers argued that the grouped 
object was the favored percept, and that the 
individual features were (at worst) lost or (at 
best) difficult to perceive (Koffka, 1935). 
Although Gestaltists outlined several basic 
heuristics by which the visual system groups 
features (similarity, proximity, common 
fate, etc), the underlying mechanism(s) driv-
ing this grouping, as well as the algorithm 
that supports it, remained elusive. It may be 
that Gestalt grouping amounts to a summary 
statistical representation, and the mechanism 
of ensemble coding may provide an explana-
tion for several Gestalt phenomena. 
 Although Gestalt phenomenology 
helped to define some elemental principles 
of object perception, researchers in this area 
were not explicitly thinking in terms of en-
semble perception or summary statistical 
representation. Some of the earliest explicit 
work on ensemble coding was done from a 
social psychology perspective. In an exten-
sive line of research, Norman Anderson out-
lined a simple yet flexible model called ‘in-
tegration theory’ (Anderson, 1971). His 
work demonstrated that a weighted mean 
more precisely captured how information is 
integrated than a summation model. For ex-
ample, subjects rated another individual 
more favorably when that person was de-
scribed by two extremely positive terms 
compared to when that person was described 
by two extremely positive terms in addition 
to two moderately positive terms (Anderson, 
1965). Anderson cited this as evidence that 
humans employ a weighted average when 
evaluating a complex situation (the weight-
ing of a given descriptor could be influenced 
by any number of factors). If subjects were 

summing information, then the ratings for an 
individual, described by four positive terms 
(two extreme and two moderate), should 
have been higher than for the individual de-
scribed by two positive terms (two extreme). 
Instead, the moderately positive terms pulled 
the overall impression down. Integration 
theory was extended to numerous other so-
cial contexts, including ‘group attractive-
ness’ (Anderson, Lindner, & Lopes, 1973), 
shopping preferences (Levin, 1974), and 
even the perceived ‘badness’ of criminals 
accused of certain crimes (Leon, Oden, & 
Anderson, 1973). Thus, it appears humans 
readily integrate semantic as well as social 
information, although the mechanism behind 
this process remains largely unknown. The 
implication is clear, however: social percep-
tions and attitudes may hinge on the same 
sort of underlying computations and mecha-
nisms that allow us to perceive average ori-
entation and direction of motion. 
 There is a substantial body of psy-
chophysical work demonstrating integration 
or ensemble coding of low-level feature in-
formation, the mechanisms of which are 
fairly well understood. For example, humans 
precisely perceive the average direction of 
motion of a group of dots moving along 
unique local vectors (Watamaniuk et al., 
1989; Williams & Sekuler, 1984). This 
summary is extracted in parallel using recep-
tive fields dedicated to processing motion 
across the retina (Britten & Heuer, 1999; 
Frechette et al., 2005; Jancke, 2000). Similar 
averaging principles hold true across other 
low-level domains as well, including speed 
(Watamaniuk & Duchon, 1992), orientation 
(Dakin & Watt, 1997; Parkes et al., 2001), 
number (Burr & Ross, 2008), position 
(Alvarez & Oliva, 2008; Morgan & Glen-
nerster, 1991), size (Ariely, 2001; accompa-
nying paper, 2005b), and even shadows 
(Koenderink et al., 2004; Sanders, Haber-
man, & Whitney, 2008)– a testament to the 
elemental and far-reaching implications of 
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ensemble coding. Given its flexibility, it 
may come as no surprise that summary rep-
resentation extends to complex, higher level 
objects, including faces (Figure 1; de Fock-
ert & Wolfenstein, 2009; Haberman, Harp, 
& Whitney, 2009; Haberman & Whitney, 
2007, 2009; Sweeny, Grabowecky, Paller, & 
Suzuki, 2009). 
 
Perceiving average size 
 While it is very important to recog-
nize the significance of the earlier work on 
feature averaging, the bulk of this review 
will focus on ensemble coding within the 
last decade. This is partly due to the fact that 
the vast majority of ‘ensemble perception’ 
research published prior to then was done 
from a low-level psychophysics perspective. 
Although this research remains crucially in-
formative, the importance of ensemble cod-
ing extends to attention, cognition, and sev-
eral other broader areas of psychology. The 
growing interest in the field within the last 
decade was sparked by both its general ap-
peal and because of the implications it held 
for traditional notions of perception and 
awareness.  

The current era in the study of en-
semble statistics began when Ariely (2001) 
provided evidence that observers could de-
rive the average size from a set of dots vary-
ing in size. In fact, this summary representa-
tion was the favored representation, as ob-
servers implicitly extracted the mean infor-
mation. Observers viewed sets of dots for 
two seconds, and then responded whether a 
subsequently viewed test dot was a member 
of the set. The striking aspect of these data 
was not that observers performed poorly at 
the member identification task. As the size 
of the test dot approached the average size 
of the array of dots, observers were much 
more likely to respond that the test dot was a 
member of the set. Even though observers 
were instructed to attend to the individual 

members, they instead represented the sum-
mary of the set constituents. When explicitly 
asked about the mean size of a set of dots, 
observers were nearly as precise in discrimi-
nating the mean size of several dots as they 
were in discriminating the size of a single 
dot. Interestingly, mean discrimination per-
formance seemed invariant to set size (up to 
16 items), possibly suggesting that serial 
attentional mechanisms may not be required.  

 
Average size and the role of attention 
 Although ensemble representations 
had been established for many low-level 
visual attributes, the notion that these repre-
sentations might be available effortlessly 
and underlie much of our subjective visual 
awareness of scene “gist” remained un-
tested. Chong and Treisman (2003) were 
among the first to systematically make the 
connection between ensemble representa-
tions and visual attention (accompanying 
paper, 2005a, 2005b). Based on several 
pieces of evidence, Chong and Treisman 
made a strong case that average size percep-
tion occurs ‘automatically’ (although they 
qualified that term by describing ensemble 
coding as occurring ‘in parallel and without 
intention rather than without attention’ 
Chong & Treisman, 2005b). Robust average 
size perception was demonstrated across an 
impressive array of manipulations, showing 
immunity to changes in presentation (simul-
taneous versus successive), duration, and set 
distribution. In one series of experiments 
(accompanying paper), observers were 
asked to identify which of two sets of 12 
circles had the larger mean size. The sets 
were either presented simultaneously (side-
by-side) or successively. Observers’ dis-
crimination of the average size of the set 
was nearly as precise as their discrimination 
of the size of a single circle, regardless of 
presentation condition (simultaneous or suc-
cessively). Equally important was the fact 
that set exposure duration had only a minor 
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impact on average size discrimination. Even 
when the sets were presented for only 50 ms 
observers were able to derive an accurate 
estimate of the mean size.  
 Chong and Treisman (2003) also at-
tempted to address alternative strategies that 
observers might use in assessing the average 
size. In the initial experiments, the distribu-
tion of circle sizes used was uniform in a 
given set; that is, each size was equally rep-
resented. Observers could theoretically have 
compared the largest circle in each of the 
two sets to arrive at the correct answer, by-
passing a mean calculation altogether. To 
control for this, Chong and Treisman tested 
multiple circle size distributions, including a  
‘two-peaks’ distribution, a normal distribu-
tion, a homogeneous distribution, and the 
original uniform distribution of circle sizes 
(Figure 2A). Observers saw two sets of cir-
cles presented simultaneously. Both arrays 
either had the same distributions or different 
distributions. Performance on mean size dis-
crimination when viewing two identical dis-
tributions was as good as it was when view-
ing the original uniform distributions. Al-
though performance was significantly worse 
when the simultaneously presented distribu-
tions differed, this amounted to a difference 
in discrimination ability of only 2%. Ac-
cording to the authors, this is evidence that 
participants were indeed averaging, since 
strategies of comparing single dots across 
sets would not have succeeded when view-
ing differing distributions. This seems rea-
sonable, as the negligible difference in per-
formance could be attributed to differences 
in variance (Callaghan, 1984, 1989; Dakin 
& Watt, 1997; Duncan & Humphreys, 1989; 
Morgan et al., 2008) introduced by manipu-
lating the shape of the distribution of circles 
in each set.  
 Although these thorough experi-
ments suggest that ensemble coding occurs 
implicitly and perhaps in parallel, there is 
still evidence to suggest that performance is 

affected by manipulations of attention 
(Chong & Treisman, 2005a). Using an inter-
esting technique, Chong and Treisman 
(2005) asked observers to perform a dual 
task, which on any given trial included 
searching for a target (hard or easy search) 
and either a mean discrimination task or a 
member identification task (Figure 2B). In 
the easy search task, observers had to find 
an open circle (a ‘C’) among a sea of closed 
circles, which the authors argued corre-
sponded to a distributed or global mode of 
attention. In the hard search task, observers 
had to find the converse; a closed circle 
among an array of open circles (‘C’s’ in 
various orientations), a task that putatively 
required focused or local attention 
(Treisman & Gormican, 1988). Following 
the search task, observers either judged 
which of two circles corresponded to the 
mean of the previously viewed set (mean 
discrimination) or which of two circles cor-
responded to a specific member of the pre-
viously viewed set (the location of which 
was indicated by a dot; membership identifi-
cation). They hypothesized that engaging 
mechanisms of global attention should fa-
cilitate mean discrimination performance, 
and mechanisms of local attention should 
facilitate membership identification. Indeed, 
the results confirmed this (solid arrows in 
Figure 2B), showing the predicted interac-
tion between attentional mode and 
mean/member judgment.  

Chong and Treisman (2005a) also 
found an attentional modulation in a second 
experiment that did not require observers to 
make judgments about the set constituents. 
Instead, observers made orientation judg-
ments about a large rectangle that encom-
passed the array of circles (global attention) 
or a small rectangle in the center of the array 
of circles (local attention). The authors 
speculated that attending to the large rectan-
gle would facilitate distributed attention, re-
sulting in more precise average size repre-
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sentation than when attending to the small 
rectangle. Indeed, observers had superior 
mean discrimination performance when they 
had to judge the orientation of the large rec-
tangle. Thus, even though ensemble coding 
can occur implicitly (Ariely, 2001; accom-
panying paper), the precision of mean repre-
sentation (at least for size) does depend 
upon the spread of spatial attention. 
 Although summary statistical per-
ception of size is modulated by attention, 
another elegant experiment (Chong & Tre-
isman, 2005b) further demonstrated its 
automaticity. Observers discriminated the 
average size of a subset of an array of circles 
that was segregated from the rest of the ar-
ray by color (Figure 2C). Observers were 
remarkably precise on this task. In fact, av-
erage size perception did not differ whether 
the color cue preceded or followed the array 
of circles, and was no worse even when only 
a single color was presented. Since the cue 
did not make a difference in performance, 
the authors argue that the average size is 
computed automatically and across multiple 
sets, preceding or perhaps bypassing limita-
tions imposed by the attentional bottleneck. 
They suggest that object binding is not nec-
essary to extract a mean, and that instead a 
strategy akin to guided search may play an 
important role (Wolfe, Cave, & Franzel, 
1989). If the visual system can rapidly (i.e. 
in parallel) segregate the scene using a fea-
ture map (in this case color), then average 
size representation should not be compro-
mised by the presence of an irrelevant subset 
of circles. Although the role of attention in 
average size representation is an ongoing 
debate (Ariely, 2008; Chong, Joo, Emma-
nouil, & Treisman, 2008; Myczek & 
Simons, 2008; Simons & Myczek, 2008), as 
discussed below, these studies provide sup-
port for the existence of an automatic 
mechanism responsible for average size 
computation. 
 

Perceiving average orientation 
 The role of attention in average ori-
entation perception is less controversial than 
average size perception. There is both psy-
chophysical and physiological evidence 
suggesting that average orientation represen-
tation is a parallel process. Some of the 
strongest evidence for this comes from 
Parkes and colleagues (2001), who showed 
that the orientation of a Gabor patch 
crowded out of awareness (i.e., observers 
were unable to discriminate its orientation) 
nonetheless influenced the perceived aver-
age orientation of an entire set of surround-
ing Gabor patches. Even though observers 
could not consciously individuate or scruti-
nize the target Gabor patch, orientation de-
tectors could process the set in parallel and 
subsequently pool the information into a 
single percept. A similar conclusion was 
reached by Alvarez and Oliva (2009). An 
averaging system such as this is not directly 
dependent upon mechanisms of selective 
attention, as average orientation representa-
tion is believed to reflect an automatic, low-
level physiological mechanism (Bosking, 
Crowley, & Fitzpatrick, 2002; Victor, Pur-
pura, Katz, & Mao, 1994; Vogels, 1990).  
 Although it is clear that crowding 
(i.e., the inability to discriminate a target 
when it is flanked by distractors, even 
though it is perfectly discriminable when 
presented in isolation) is not necessary for 
the extraction of ensemble information, one 
intriguing possibility is that it enhances the 
precision of the summary representation. 
Chong and Treisman (2005a) showed that 
distributed attention improved average size 
representation; crowding (Evans & Chong, 
this volume; Levi, 2008; Pelli, Palomares, & 
Majaj, 2004) by definition disrupts any se-
rial attentive process (Intriligator & 
Cavanagh, 2001), which may force observ-
ers into an attentional strategy more condu-
cive to summary representation. Thus, per-
haps crowding facilitates the condensation 
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of (even consciously inaccessible) informa-
tion into efficient “chunks.” 
 
Perceiving average position 
 Psychophysical experiments first 
demonstrated that humans are sensitive to 
average or centroid position (Hess & Holli-
day, 1992; Morgan & Glennerster, 1991; 
Whitaker, McGraw, Pacey, & Barrett, 
1996). More recent work by Alvarez and 
Oliva (2008) suggests that selective atten-
tion may play a minimal role in this process. 
Using a multiple object tracking task 
(Intriligator & Cavanagh, 2001; Pylyshyn & 
Storm, 1988), Alvarez and Oliva (2008) 
found that even when observers were unable 
to identify individual unattended objects, 
they could localize the centroid of those ob-
jects. While Chong and Treisman (2005b) 
demonstrated that distributed attention could 
improve an estimate of the mean, this work 
(Alvarez & Oliva, 2008) showed that a 
summary might be derived even in the ab-
sence of attention. Consistent with this, De-
meyere and colleagues found that a patient 
with simultanagnosia (Balint syndrome, see 
Humphreys, this volume; Robertson, this 
volume) could perceive ensemble color in an 
array of stimuli despite being unaware of the 
array (Demeyere, Rzeskiewicz, Humphreys, 
& Humphreys, 2008). 
 
Perceiving Ensembles of Faces  
 For many years, the focus of re-
search on ensemble and summary statistical 
perception has been on low-level stimuli 
(motion, orientation, position, size, etc). 
However, given our effortless interaction 
with highly complex scenes, and our subjec-
tive impression of a rich and complete visual 
world, it is reasonable to think that the en-
semble coding heuristic might operate on a 
processing level beyond that of orientation, 
size, or texture. Haberman and Whitney 
(2007; 2009; Haberman, Harp, & Whitney, 

2009) explored the possibility that observers 
could extract an average representation from 
high-level stimuli, including faces. The 
authors created a series of morphs, varying 
the expression of faces ranging from ex-
tremely happy to extremely sad. Observers 
viewed sets of these emotionally varying 
faces, and were asked whether a subsequent 
test face was happier or sadder than the 
mean expression of the previous set. Re-
markably, observers could discriminate the 
average expression of the whole set as well 
as they could discriminate the expression of 
a single face. This phenomenon proved to be 
robust and flexible, operating implicitly and 
explicitly (Haberman & Whitney, 2009), 
across a variety of expressions as well as 
gender morphs (Haberman & Whitney, 
2007), at short exposure durations (as low as 
50 ms, although with reduced precision; 
Haberman & Whitney, 2009) and on sets 
containing as many as 20 faces (Haberman, 
Harp,  & Whitney, 2009; see Figure 3 for a 
summary of results). Control experiments 
demonstrated that the mean discrimination 
of expression declined when viewing sets of 
inverted or scrambled faces, suggesting that 
the visual system extracts summary statisti-
cal information about the configural or ho-
listic properties of faces, not just about low-
level visual cues such as spatial frequency 
(Oliva & Torralba, 2001; Torralba & Oliva, 
2003) or orientation. Summary statistical 
representation must occur at multiple, dis-
tinct levels of the visual processing hierar-
chy. High-level ensemble coding is further 
supported by other work showing that ob-
servers can rapidly perceive the mean iden-
tity of sets of faces (de Fockert & Wolfen-
stein, 2009), as well as research showing 
rapid within-hemifield emotional averaging 
predicted by properties of neural averaging 
(Sweeny et al., 2009). 
 Perceived facial expression also rap-
idly integrates over time. (Haberman, Harp, 
& Whitney, 2009). Observers viewed se-
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quences of different faces presented at vari-
ous temporal frequencies and made judg-
ments about the mean expression of those 
sequences. The precision with which ob-
servers perceived average facial expression 
was relatively invariant to changes in tempo-
ral frequency. In fact, observers were able to 
accurately derive a mean expression in a se-
quence of 20 faces presented at 20 Hz. The 
more critical factor was the total time avail-
able for viewing the faces—curve fitting 
suggested that the time constant of temporal 
integration of perceived facial expression is 
around 800 ms. Naturally, all visual proc-
esses require some amount of time to inte-
grate (even motion and orientation, which 
are believed to be parallel processes). There-
fore, an integration time constant of 800 ms 
does not rule out the existence of a parallel 
mechanism at work. Although the integra-
tion time for sets of faces was higher than 
that for low-level motion (Burr, 1981; Na-
kayama, 1985; Snowden & Braddick, 1989), 
it compares favorably with the time it takes 
the visual system to perceive biological mo-
tion (Neri, Morrone, & Burr, 1998).  
 Summary statistics capture well and 
may explain texture appearance—the gran-
ite-ness, stucco-ness, etc. of surfaces. While 
textures have been extensively studied 
(Beck, 1983; Landy & Graham, 2004; Malik 
& Rosenholtz, 1997; Nothdurft, 1991), and 
summary statistical representation of low 
level features holds for typical “textures,” 
the finding that groups of faces are per-
ceived as an ensemble—as a texture—
suggests that textures can occur at any level 
of visual analysis.  
 This brief survey is necessarily in-
complete, but it provides a glimpse at the 
history of ensemble perception and some of 
the continuing debates. The next section ex-
plores some of these debates more fully, as 
well as some of the most common concerns 
regarding research on summary statistical 
perception. 

 
Current Debates in Summary Statistical 
Perception 
Can ensemble perception be explained by 
serial mechanisms of attention? 
 One of the most important contribu-
tions of the work by Chong and Treisman 
(2003) is that it brought to light the possibil-
ity that summary statistical perception might 
provide an efficient means of representing 
information with little attentional involve-
ment. Recently, the idea of an automatic av-
eraging mechanism for absolute size has be-
come more contentious. Some researchers 
have suggested that, unlike motion or orien-
tation integration (Parkes et al., 2001; Wa-
tamaniuk & Duchon, 1992; Williams & 
Sekuler, 1984), the representation of average 
size is not supported from a physiological 
perspective (Myczek & Simons, 2008). Av-
erage motion and orientation perception may 
be driven by information pooled across indi-
vidual receptors, whereas according to My-
czek and Simons (2008) there are no ‘size’ 
receptors, per se, that can give rise to an av-
erage size percept (though c.f., Op De Beeck 
& Vogels, 2000; Sripati & Olson, 2009; 
Stuart, Bossomaier, & Johnson, 1993; Vo-
gels, 2009). Using a series of elegant simu-
lations, Myczek and Simons (2008) argued 
that much of the extant average size data 
might be well captured by established 
mechanisms of selective attention.  
 The claim of average size automatic-
ity was predicated upon several pieces of 
evidence, including the invariant perform-
ance across set size manipulations (Ariely, 
2001), implicit average size representation 
(Ariely, 2001), the speed with which aver-
age size was derived (accompanying paper), 
and the ability to represent the average size 
of subsets without a prior cue directing at-
tention (Chong & Treisman, 2005b). Using 
existing average size discrimination 
datasets, Myczek and Simons modeled per-
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formance of an ideal observer who simply 
subsampled from the set of circles. That is, 
they examined mean discrimination per-
formance when an observer examined N cir-
cles from a set of 12. These results have sig-
nificant implications for the claims of a 
dedicated ensemble coding mechanism, at 
least in the arena of average size perception. 
If average size discrimination could be ex-
plained by averaging a small portion of the 
set, it would suggest that well-established 
mechanisms of selective attention might be 
operating. Indeed, the simulations suggested 
that for much of the published average size 
data, averaging just a couple of the items 
matched mean discrimination performance 
of actual observers (although some tasks re-
quired as many as four circles). Myczek and 
Simons (2008) noted that certain cognitive 
strategies (conscious or not) might serve to 
help observers ‘cheat’ on the task. For ex-
ample, in some of the paradigms, identifying 
the largest circle in each set was sufficient to 
correctly identify the set with the largest av-
erage size. However, Chong and Treisman 
(2003, 2005b) used an extensive array of 
paradigms, manipulating the distribution of 
the circles, as well as the density and nu-
merosity of the sets, which made a singular 
‘cheat’ strategy impossible. In a follow-up 
study, Chong and colleagues (Chong et al., 
2008) had observers perform several vari-
ants of the average size discrimination para-
digm within a single run. Observers were 
able to derive the average size equally well 
across the various paradigms, and the 
authors suggested that using a cognitive 
‘cheat’ would have required switching 
strategies on a trial-by-trial basis – some-
thing relatively improbable. In response to 
this demonstration, Simons and Myczek 
(Simons & Myczek, 2008) argued that, 
while empirical testing of alternative strate-
gies was commendable, the manipulation 
did not discount the possibility of observers’ 
utilizing still other strategies consistent with 

focused attention. They claimed that, be-
cause average size perception depends upon 
unknown physiological mechanisms (i.e. 
receptors sensitive to absolute size), the bur-
den of proof rests upon researchers to dis-
credit subsampling, which operates under 
already established attentional mechanisms.  
 One shortcoming of the Myczek and 
Simons simulations, as pointed out in a re-
cent commentary (Ariely, 2008), was that 
the authors did not incorporate any “judg-
ment” noise. That is, the data represented an 
ideal observer. Estimating the proper 
amount of noise to incorporate is difficult at 
best, however, which is why empirically rec-
reating the conditions of the model using 
observers is prudent. Chong and colleagues 
(2008) asked observers to discriminate the 
average size given only a subset of the array 
of circles (one, two, or eight items), similar 
to the design used by Myczek and Simons in 
their simulations. The results suggested that 
estimating the average size when viewing 
one or two items could not match perform-
ance when observers viewed all eight items. 
This is in contrast to at least some of the 
modeling done by Myczek and Simons 
(2008), which showed that subsampling one 
or two items from the set was sufficient (in 
many cases) to match observer performance 
when viewing the whole set. However, 
Chong and colleagues (2008) did not charac-
terize observer performance across addi-
tional sampling conditions (three through 
seven), which makes it difficult to assess 
just how much information was necessary to 
accurately represent the average size of the 
set. In addition, Simons contends that forc-
ing observers to assess the average set size 
using arbitrarily assigned circles from the set 
may not reflect the strategy they use when 
given the opportunity to view the whole set 
(personal communication, 2009).  
 Work completed contemporaneously 
and independently may support the assertion 
that average size is computed via subsam-
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pling (de Fockert & Marchant, 2008). De 
Fockert and Marchant (2008) showed that 
when attention was directed to a specific 
constituent of the set (e.g., the largest circle 
in the display), the average size estimate was 
modulated by the size of the attended con-
stituent. For example, observers tended to 
overestimate the average size of a set when 
they were instructed to attend to the largest 
item. Although this seems to implicate fo-
cused attention, it is actually only a modula-
tion. Indeed, Chong and Treisman  (2005a) 
have also demonstrated an attentional modu-
lation of summary statistical perception. At-
tentional modulation, on its own, is not suf-
ficient to adjudicate between the alternative 
explanations; that is, the fact summary sta-
tistical perception is subject to attentional 
modulation does not imply that focused at-
tention (i.e., subsampling) is the underlying 
strategy.  
 The issue of whether focused atten-
tion or parallel processes mediate average 
size perception remains an open question. 
Nevertheless, the recent line of inquiry high-
lights some critical ideas. For one, modeling 
behavior can be a powerful approach for rul-
ing out specific alternative hypotheses, in 
this case the possibility that focused atten-
tion could be used as a strategy to derive the 
average size. Modeling, whenever possible, 
should be supported by empirical research to 
verify the model’s plausibility. Although 
this modeling was used to test average size 
perception exclusively and says nothing of 
other summary statistical domains (Myczek 
& Simons, 2008; Simons & Myczek, 2008), 
it does raise the question of what constitutes 
a ‘parallel’ process. Traditionally, the hall-
mark of a parallel process in the visual 
search literature is a flat search slope as a 
function of the number of items in the dis-
play (Treisman & Gelade, 1980). In the case 
of averaging, set size invariance has also 
been used to argue for a parallel mechanism. 
However, even processes like average size, 

speed, and orientation perception (Morgan et 
al., 2008; Parkes et al., 2001; Watamaniuk 
& Duchon, 1992; Watamaniuk et al., 1989; 
Williams & Sekuler, 1984), which are gen-
erally considered to operate in parallel, may 
also be explained by subsampling (e.g., 
Morgan et al., 2008). Therefore, what counts 
as a parallel process may not be parallel in 
the way that is often implied; it may not be 
that every item is analyzed simultaneously, 
or that every item is compared to every other 
item simultaneously, but, rather, a subset of 
items is analyzed as representative of the 
entire group (see Figure 4 for a model of this 
idea). If the number of subsampled items 
required to match performance does not far 
exceed the limits of multiple-object or atten-
tive tracking (Pylyshyn & Storm, 1988), can 
we rule out attention? Conversely, even if 
the number of sampled items is within atten-
tional tracking and visual short-term mem-
ory capacity limits (Luck & Vogel, 1997), 
then must we conclude that attention is re-
sponsible? Clearly not, as this test does not 
rule out a mechanism that simultaneously 
(truly in parallel) samples every item, but 
does so very noisily. As found in the tempo-
ral integration of faces (Haberman et al., 
2009), there is a tradeoff between the num-
ber of samples and the noisiness of the sam-
pling. 
 Other paradigms may lend them-
selves to disambiguating this issue more di-
rectly. For example, multiple object track-
ing, crowding, or global versus local orienta-
tion judgments (Alvarez & Oliva, 2008, 
2009; Parkes et al., 2001) have been used to 
effectively demonstrate summary statistical 
representation without attention. However, 
these findings do not directly generalize to 
average size representation, ensuring con-
tinuing debate for some time to come. 
Is ensemble perception just a prototype? 
 The demonstration of summary sta-
tistical representation for faces may raise the 
concern that the results are simply due to a 
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prototype effect (Solso & Mccarthy, 1981). 
Indeed, there has been significant research 
providing evidence that observers implicitly 
develop statistical sensitivities to arbitrary 
patterns over time (Fiser & Aslin, 2001; 
Posner & Keele, 1968). However, unlike the 
prototype effect, ensemble coding requires 
no learning; summary statistical representa-
tion is a perceptual process and observers 
are sensitive to it after only a single trial. 
Prototype suggests that observers falsely 
recognize an average face due to predomi-
nant exposure to specific facial features over 
an extended period (Solso & Mccarthy, 
1981). The average face (or size, orientation, 
etc.) in ensemble coding, though, changes 
on a trial-by-trial basis and is immediately 
recognizable. Ensemble perception is there-
fore a much more flexible pooling of impor-
tant information into computationally palat-
able chunks. Observers never actually see 
the average face of a set and yet they favor 
the ensemble percept over the individuals. 
 
Multiple levels and multiple pathways of En-
semble Coding 
 The robust summary statistical repre-
sentations found across domains suggests 
that ensembles are calculated at multiple 
levels in both the dorsal and ventral streams. 
Since orientation information is processed in 
early visual areas, average orientation is 
likely extracted prior to high-level object 
processing. Likewise, average expression 
from a crowd of faces must be mediated at a 
later stage of processing along the ventral 
pathway. Some ensembles, such as average 
brightness, color, and orientation, may be 
created at the earliest cortical (and possibly 
even subcortical) stages. Others, such as mo-
tion and position, may be generated along 
the dorsal stream. Finally, high-level shape 
and face ensembles are likely generated 
along the ventral, object-processing stream. 
Despite the distinct object properties proc-
essed at each level, the uniting commonality 

is that any set may be represented by a sin-
gle, ensemble percept. This percept is cre-
ated and maintained for conscious access, 
while the individual constituents are lost (via 
limitations of visual working memory, 
crowding, etc.). Since the visual system cre-
ates a representation of all the items within a 
set, loss of the individual is inconsequential. 
Many unanswered questions remain such as 
how many concurrent ensemble percepts can 
be maintained, whether there is interference 
between different levels of ensemble analy-
sis (e.g., average facial expression, bright-
ness, and orientation), and whether the en-
sembles bypass the limited capacity of atten-
tion and visual short term memory, or in-
stead simply act as “chunks” of information, 
increasing processing efficiency while still 
drawing on the finite resources of attention 
and memory.  
 
Implications for Ensemble Coding 
Visual Search 
 There is an appealing connection be-
tween ensemble coding and visual search. 
Despite the rich literature on the properties 
of visual search (Treisman, 1982; Verghese, 
2001; Wolfe et al., 1989), a physiologically 
plausible mechanism (i.e., an algorithm and 
neural implementation in Marr’s terms; 
Marr, 1982) driving pop-out (a phenomenon 
in which a visual target is rapidly discern-
able from a set of distractors) is still debated 
(Eckstein, 1998; Itti & Koch, 2000; Wolfe, 
2003). Ensemble coding offers one possible 
solution; summary statistical representations 
may serve as a computationally efficient 
means of identifying deviance. Many mod-
els have made similar suggestions (e.g., 
Callaghan, 1984; Duncan & Humphreys, 
1989). Usually, these models suggest that 
“similarity” modulates pop-out (Duncan & 
Humphreys, 1989). However, what counts 
as “similar” or “dissimilar” is unclear. 
Summary statistical representations, per se, 
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could provide the underlying computation—
the metric of similarity—that affords devi-
ance detection.  
 How might such an algorithm that 
extracts ensemble information be imple-
mented in the brain? Figure 4A shows an 
example of an array of oriented lines or Ga-
bor patches, which would stimulate many 
local populations of orientation selective 
cells (e.g., in V1). If a subset (or the whole 
set) of local tuning curves is sampled (Fig-
ure 4B) and pooled (Figure 4C), a global 
population tuning curve is represented (the 
model would work equally well if the entire 
set were sampled, but this conception ac-
counts for the possibility that only a subset 
of the items are sampled; c.f., (Dakin & 
Watt, 1997; Morgan et al., 2008; Myczek & 
Simons, 2008). This global population curve 
is the average of local tuning curves and ul-
timately produces an ensemble percept (Fig-
ure 4D). Note that the impact of any deviant 
orientation is washed-out in the global popu-
lation curve, as most of the inputs are of 
similar orientations. The global population 
response then normalizes the local tuning 
(via feedback or horizontal connections; 
Figure 4E). Most of the local population re-
sponses are reduced to near 0, and what is 
left is activity corresponding to the deviant 
orientation. Although low-level normaliza-
tion or contextually dependent procedures 
have been implemented in other models 
(e.g., Itti, Koch, & Niebur, 1998; Li, 1999), 
this model implicates ensemble coding as 
the physiological impetus for pop-out. A 
particular strength of this model is that the 
normalization operation may be carried out 
in parallel, without requiring multiple com-
parisons across local population responses.   
   
Linking summary statistics to perception 
 There is ample evidence that humans 
are able to quickly extract a great deal of 
information from scenes (Oliva & Torralba, 

2001; Potter, 1976; Thorpe, Fize, & Marlot, 
1996; Torralba & Oliva, 2003). Exactly 
what cues reveal the gist of a scene and what 
particular physiological mechanism could 
code for this sort of information remain un-
known. Although there are other possibili-
ties, one intriguing idea is that it is summary 
statistics, per se, that drive much of what we 
consider or perceive as “gist” (e.g., Alvarez 
& Oliva, 2009; accompanying paper; 
Haberman & Whitney, 2007). There is al-
ready some support for this idea, but many 
open questions persist before a direct link 
can be formed between the seemingly 
incommensurable capacity limits of vision 
and the phenomenological richness of per-
ception.  
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Figure Captions 
 

Size Orientation Motion Speed

Texture FacesPosition Shadow

Figure 1. The various domains in which summary statistical representation occurs. The 
flexibility of summary representation suggests that it occurs across multiple levels along the vis-
ual hierarchy.  
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Figure 2. Some of the aver-
age size paradigms implemented 
by Chong and Treisman. (A) By 
manipulating the distribution of 
circle sizes within the set, one 
can rule out potentially con-
founding strategies, such as ex-
amining only the largest circle 
size in each set. (B) The dual 
task was used to examine the 
effects of attentional modulation 
on average size representation. 
In the serial search (searching 
for a closed circle among open 
ones), which required more fo-
cused attention, observers per-
formed better in identifying 
whether are particular circle ap-
peared at the indicated location. 
In the parallel search (searching 
for an open circle among closed 
ones), a task requiring more 
global attention, observers were 
better able to extract the average 
size of the whole set. Thus, 
one’s attentional state can modu-
late summary statistical repre-
sentation performance. (C) Ob-
servers had to determine the average size of the color-defined set of circles given either a pre-cue 
or a post-cue. Remarkably, they were just as precise when they were given a post-cue as when 
they were given a pre-cue. Thus, observers could generate a mean representation for both sets 
simultaneously and without cost.  

Which circle was the mean size? Which circle appeared at the 
location indicated by the dot?
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Figure 3. Some of the face averaging 
paradigms implemented by Haberman and 
Whitney. (A) Observers had to identify 
whether a test face was a member of the pre-
viously displayed set. Observers were most 
likely to indicate a test face was a set mem-
ber when it approached the mean expression 
of the set (0 indicates the mean expression). 
Thus, observers were unable to represent the 
individual set constituents, but instead fa-
vored the ensemble. (B) Observers were ex-
plicitly asked about the average expression in 
a set. Surprisingly, they could discriminate 
the mean expression (triangles, dotted line) 
as well as they could discriminate any single 
face (circles, solid line). (C) Observers used 
the mouse to adjust the test face to match the 
mean expression of the set. This provided the 
full error distribution of the mean representa-
tion (0 indicates the mean expression). Re-
sponses tended to cluster around the mean 
expression of the set. 
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Figure 4. One 
possible physiologi-
cal mechanism driv-
ing pop-out. (A-B) 
Orientation selective 
cells (possibly in V1) 
fire in response to 
visual input. (C-D) 
The activity from 
some or all of the 
orientation selective 
cells is combined to 
create the ensemble. 
(E)Via feedback or 
horizontal connec-
tions, the activity 
from orientation se-
lective cells is nor-
malized to the popu-
lation response (i.e. 
ensemble). Any cell 
activity remaining 
will correspond to the deviant. One of the strengths of this model is that it can operate in parallel, 
negating the computationally inefficient method of comparing each item with every other one. 
 

(C) Local population response 
to each visual input is pooled 
to generate the ensemble.
Works with the whole set 
or a subset.

Ensemble Percept

Visual input
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(E) Normalize V1 responses to average 
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Easy deviant detection

(B) Local population responses 
for the whole set or a subset of 
image features
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