
At any given moment, we are actively identifying one or 
very few items (Luck & Vogel, 1997; Rensink, O’Regan, 
& Clark, 1997; Simons & Levin, 1998; Simons, Nevarez, 
& Boot, 2005). However, this counters our rich perceptual 
experience. Either our intuition is an illusion (often re-
ferred to as the grand illusion; Noë, Pessoa, & Thompson, 
2000) or we perceive more information than has been re-
vealed by previous studies. There has been a recent surge 
in the study of ensemble coding, the visual system’s abil-
ity and natural tendency to represent sets of similar items 
using summary statistics (Ariely, 2001; Chong & Treis-
man, 2003; Haberman & Whitney, 2007, 2009; Parkes, 
Lund, Angelucci, Solomon, & Morgan, 2001). For exam-
ple, averaging has been established for low-level features 
and textures, such as orientation (Dakin & Watt, 1997; 
Parkes et al., 2001), direction and speed of motion (Wata-
maniuk, 1993; Watamaniuk & Duchon, 1992), position 
(Alvarez & Oliva, 2008; Morgan & Glennerster, 1991), 
shadow orientation (Koenderink, van Doorn, & Pont, 
2004), size information (Ariely, 2001; Chong & Treisman, 
2003), and even facial expression/identity (de Fockert & 
Wolfenstein, 2009; Haberman & Whitney, 2007, 2009; 
Sweeny, Grabowecky, Paller, & Suzuki, 2009). Although 
it is generally agreed that the visual system extracts sum-

mary statistical properties about most low-level features 
(e.g., position, orientation, motion, etc.), it is unclear 
whether this is the case for information about sizes of av-
erages (Myczek & Simons, 2008).

In a series of elegant simulations, Myczek and Si-
mons (2008) found that many of the results purporting 
average size perception could be explained by our cur-
rent understanding of working memory (i.e., sampling 
just a few items from the set), negating the necessity of 
a putative mechanism dedicated to average size repre-
sentation (although this is debated; Ariely, 2008; Chong, 
Joo, Emmanouil, & Treisman, 2008; Simons & Myczek, 
2008). Although Myczek and Simons’s work was limited 
strictly to average size perception, it is important to con-
sider that such a cognitive sampling strategy could extend 
to other visual domains (e.g., faces); perhaps summary 
statistical representations are automatically computed, 
prior to a stage of selection, only for very low-level visual 
features, such as position, motion, color, lightness, and 
orientation.

We have previously shown that observers perceive the 
average expression in a crowd of faces with great preci-
sion and reliability (Haberman & Whitney, 2007, 2009). 
Observers derive this mean representation despite lack-
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expressions of faces in crowds, all while discounting devi-
ant information.

EXPERIMENT 1A

In the first experiment, we used an MOA technique 
to assess the precision with which the observers would 
represent the mean emotion of a set of faces. Observers 
adjusted the expression of a test face to match the per-
ceived mean of the previously displayed set of faces. Un-
like in previous research, however, these sets contained 
emotional outliers (i.e., faces that substantially deviated 
from the overall set mean). The introduction of emotional 
outliers addresses a particular issue of interest: Do ob-
servers incorporate the outliers in their assessment of the 
overall set mean, or do they disregard the outliers? Outlier 
facial expressions would tend to disrupt a serial sampling 
strategy (Myczek & Simons, 2008) more than a global, 
parallel averaging process (e.g., linear pooling, as in the 
orientation domain; Parkes et al., 2001) because including 
outliers in one’s sample would heavily distort or shift the 
mean representation (particularly if observers sampled 
only a couple of items).

The MOA technique offers an alternative measure of 
summary statistical precision, as described below. It is 
important to note that we pushed the limits of statistical 
face representation abilities by presenting sets of 12 faces 
for 250 msec.

Method
Participants. Five individuals (3 female, mean age  23.6 years) 

affiliated with the University of California at Davis, participated. 
Informed consent was obtained for all of the volunteers, who were 
compensated for their time and had normal or corrected-to-normal 
vision. All of the research was approved by the university’s Institu-
tional Review Board.

Stimuli. We created three sets of 50 faces by linearly interpo-
lating (Morph 2.5, 1998) between 2 emotionally extreme faces of 
the same person, taken from the Ekman gallery (Ekman & Friesen, 
1976). To create the range of morphs, multiple facial features (e.g., 
corners of the mouth, bridge of the nose, center of the eye, etc.) were 
matched between the emotionally extreme faces. The software then 
linearly morphed between the start- and endpoints specified and out-
putted 50 image files. The stimulus sets ranged from happy to sad, 
sad to angry, and angry to happy. The amalgam of 150 faces formed 
the stimulus set, a virtual circle of emotions that was functionally 
infinite (see Figure 1).

Morphed faces were nominally separated by emotional units 
(e.g., Face 2 was one emotional unit sadder than Face 1). The label 
emotional unit is arbitrary, and we do not mean to imply that every 
emotional unit corresponds to a categorically distinct emotion. Al-
though emotion representation is thought to unfold nonlinearly in 
emotion space (Russell, 1980), previous testing revealed that our 
stimulus set is psychophysically linear (i.e., all morphs were equally 
discriminable; Haberman, Harp, & Whitney, 2009). Face images 
were grayscale (98% maximum Michelson contrast) and occupied 
3.04º  4.34º of visual angle. The set of 12 faces on the screen oc-
cupied 12.16º  13.02º of visual angle. Faces were presented in a 
3  4 grid (Figure 1A). The background relative to the average face 
had a maximum Michelson contrast of 29%.

In previous studies, ensemble face perception was investigated 
using sets of faces that had a uniform distribution of emotional 
valences (Haberman & Whitney, 2007, 2009). Similar to those in 

ing information about the set’s constituents. However, an 
important question is whether the perception of average 
facial expression is actually the result of a dedicated, au-
tomatic, summary statistical process (e.g., linear pooling, 
as in the orientation domain; Parkes et al., 2001). It may 
be the case that the perception of average facial expression 
results from the cognitive sampling of one or two face(s) 
from the entire set, rather than from an explicit averaging 
mechanism.

It is important to note that, in all visual domains—
whether texture perception, global motion perception, 
or average expression perception—subsampling some 
number or percentage of stimuli over space or time will 
eventually adequately explain performance (e.g., Morgan, 
Chubb, & Solomon, 2008). Thus, we distinguish between 
automatic, implicit, unintentional subsampling, which is 
ubiquitous even in “low-level” texture perception, and 
cognitive subsampling, in which intentionally collecting 
only one or two items is sufficient to match averaging per-
formance. Our goal was to test whether ensemble percep-
tion occurs automatically and unintentionally and is not 
bound by the limits of a cognitive sampling strategy.

Given the complexity of emotional face processing, 
one might expect that perceiving average facial expres-
sion should rely on a serial sampling of very few face 
images (i.e., cognitive subsampling). Indeed, emotion 
recognition is processed with relative sluggishness; faces 
typically do not exhibit popout effects (Brown, Huey, & 
Findlay, 1997; Kuehn & Jolicœur, 1994; Nothdurft, 1993), 
even from among other faces that possess highly salient 
differences. Searching for an emotional face tends to be a 
deliberate, serial process (although see Hansen & Hansen, 
1988). Ensemble coding of faces—the perceptual averag-
ing of emotional expression (Haberman & Whitney, 2007, 
2009)—might therefore be expected to be a serial, delib-
erate process as well.

Here, we show that, on the contrary, summary infor-
mation about groups of faces is derived very quickly, is 
sensitive to overall statistics of crowds of faces, and is not 
driven by cognitive subsampling of 1–3 items. We mea-
sured sensitivity to summary statistics (i.e., average ex-
pression in groups of faces) using a method-of-adjustment 
(MOA) technique. Observers adjusted a test face to match 
the perceived mean expression of a preceding set of faces 
that contained emotional outliers. The emotional outliers 
introduced additional variance into the set, which made 
summary representation more difficult (Morgan et al., 
2008). We examined whether observers would compen-
sate for the increased variance by preferentially represent-
ing the local mean (the mean of the set, excluding the 
outliers) over the global mean (the mean of all of the items 
in the set). Through three behavioral experiments, along 
with Monte Carlo simulations, we show that observers 
more precisely represented the local mean expression of 
a 12-item set after only a 250-msec exposure. A cogni-
tive subsampling strategy cannot adequately account for 
the speed and precision of this effect. These experiments 
provide evidence that, under some circumstances, the vi-
sual system coarsely codes summary statistics about the 
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this experiment was that 2 of the members, selected randomly, were 
replaced with emotional outliers; sets therefore contained 10 faces 

3 and 9 emotional units around a randomly selected mean and 2 
identical outlier faces whose expression was 60 units away from 
the initial set mean (see Figure 1). This skewed the distribution and 
mean expression away from a uniform distribution and increased 
overall set variance. Note that there was a local mean expression cor-
responding to the average expression of the 10 faces that were within 

9 emotional units of each other (excluding the outliers). There was 
also a global mean corresponding to the average expression of all 
12 faces on the screen (i.e., incorporating the outlier faces that were 

60 emotional units away from the local mean).
Procedure. Observers saw the set of 12 items for 250 msec, fol-

lowed by a single test face. The initial expression of the test face 
was random. Using the mouse, observers adjusted the test face to 
match the perceived average expression of the preceding set. The 
adjustment task allowed observers to cycle through the morph circle 
(Figure 1) and choose any 1 face from the set of 150. Observers 
pressed the left mouse button to indicate their choice, and the next 
trial began 500 msec after the buttonpress.

Each run had 200 trials, and observers performed four to six runs 
(800–1,200 total trials).

Most previous experiments exploring summary statistics ( Ariely, 
2001; Chong & Treisman, 2003; Haberman & Whitney, 2007) in-
corporated some form of a two-alternative forced choice (2AFC) 
paradigm in which chance performance was 50% correct. However, 
chance performance on an MOA task is defined as 1 divided by the 
number of stimuli (1/150 in our experiment). Rather than categoriz-
ing each response as correct or incorrect, however, MOA allows 
us to derive how far observers were from the actual set mean on 
every trial. In other words, we can plot observers’ complete error 
distributions.

Results and Discussion
On each trial, there was a local mean expression and 

a global mean expression. The local mean was the aver-
age emotion of all set members, excluding the two outli-
ers. The global mean was the average emotion of all set 
members. Figure 2 shows the error distribution around the 
local and global means—that is, the difference between 
the observer’s selected test face on each trial and local 
and global means, respectively. A Von Mises distribution 
(a circular normal distribution) was fit to the error distri-
bution. Unlike in a Gaussian distribution, the area under 
a Von Mises curve must integrate to 1. Since our stimuli 
formed an emotional circle, the Von Mises was the appro-
priate distribution to use. It was formalized as

 
exp[ cos( )]
[ ( , )]

,
k x a
besseli k2 0

 

where a was the location (i.e., where along the circle the 
points cluster) and k was the concentration (i.e., inversely 
related to SD, so the larger the number, the more con-
centrated the distribution). We assessed the precision of 
mean representation by measuring the SD (converted 
from k) of the Von Mises distribution; the smaller the SD 
of the curve, the more precise the mean representation. 
Figure 2 shows that all of the observers had a smaller SD 
for local mean than for global mean, suggesting that the 
observers were more sensitive to the local mean of the set. 
Monte Carlo resampling revealed that the error distribu-
tions for the 5 individual observers were narrower for the 
local mean than for the global mean, and statistical tests 

previous experiments, the sets in this experiment initially contained 
three instances of four emotional expressions. Faces were 3 and 

9 emotional units around a randomly selected set mean, and all set 
members were distinguishable from each other. The difference in 

Sample Set

Use mouse to adjust test face to mean

Test

A

B

Location of outlier

Location of mean

Figure 1. (A) Sample trial from Experiment 1. Observers 
viewed sets of 12 faces for 250 msec. Each set contained 2 emo-
tional deviants. (B) Circle of emotions used in the experiments. 
A random face along this continuum was displayed during the 
test phase, and observers used the mouse to adjust the test face 
to match the emotional mean of the previously displayed set. The 
solid circle represents the set mean (local), and the dotted circle 
indicates the location of the deviants. Note that this is a sparse 
representation of the stimulus set.
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Figure 2. Experiment 1’s results, including the method-of-adjustment error distributions and the proportion of responses at each 
possible separation between the user-selected test face and the actual set mean. For each observer, we plotted distance from the global 
mean (including outliers) and distance from the local mean (excluding outliers) and fit a Von Mises distribution to the data. Note the 
narrowing width of the curve in the local mean condition relative to the global mean (also reflected in smaller SDs), consistent for each 
observer. The axes have been converted from radians to emotional units for readability.
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The analysis described above is collapsed across the 
sign of the emotional outliers. That is, it treats outliers 
occurring 60 units above the mean the same as outliers oc-
curring 60 units below the mean. The sign of the outlier 
may be informative, however, so we reanalyzed the data, 
fitting curves to trials in which observers saw only high or 
only low outliers (see Figure 3A). The results provide ad-
ditional evidence that observers filter, at least to some ex-

reached significance for 4 observers (only P.L.’s was not 
significant). A paired t test across observers also revealed 
a significantly smaller SD (i.e., better precision) for local 
mean than for global mean [t(4)  4.26, p  .013]. The 
greater sensitivity to the local mean suggests that observ-
ers either filtered or suppressed the outlier information—
that is, that which was impossible to integrate with the 
rest of the set.
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Figure 3. Analysis when the signs of the outliers are taken into account. (A) Regardless of the sign of the outliers, observers tended 
to ignore them when adjusting to the mean of the set, indicated by the offset of the curve from 0. (B) When flipping and averaging the 
data from panel A, there is no significant difference in the proportion of responses that occurred at the outlier location as compared 
with those that occurred at the antioutlier location (i.e., the areas surrounding 60 units from the mean).
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popped out and how well observers represented those 
faces. If the representation of the outliers was poor and 
they were no more detectable than other faces in the set, 
a strategy in which observers consciously or deliberately 
discount the outliers would be improbable.

Method
Participants. Three naive observers affiliated with the Univer-

sity of California at Davis (2 female, mean age  23 years) were 
tested; 2 of these observers had not participated in Experiment 1A.

Stimuli and Procedure. All stimuli were the same as those de-
scribed in Experiment 1A. Observers had to adjust a test face to 
match any deviant information (any outlier face) in the set across 
three intermixed conditions (see Figure 4A): (1) sets containing 
no outliers (i.e., catch trials), (2) sets identical to those in Experi-
ment 1A (2 identical outliers), and (3) sets containing outliers that 
were highlighted by a red box (i.e., explicit popout trials). If outlier 
information pops out, performance in adjusting to the outlier condi-
tion (Condition 2) should be similar to performance in adjusting 
to the outlier in the popout condition (Condition 3). However, if 
observers do not have explicit access to the individual elements of 
the set, outlier or otherwise, then we would expect outlier adjust-
ment (Condition 2) to be closer to performance on the catch trials 
(Condition 1). Observers were not told that there were catch trials. 
Observers completed two runs of 300 trials each (200 trials per con-
dition, 600 trials total).

Results and Discussion
We assessed adjustment precision using the mean 

square error (MSe), which reflects how far, on average, 
observers were from the actual outlier face: The larger the 
MSe, the worse the representation. Figure 4B shows the 
MSe for each condition for 3 observers2 (confidence in-
tervals were derived from 1,000 bootstrapped estimates). 
The MSe for outlier adjustment was not significantly dif-
ferent from the MSe for the no-outlier condition, suggest-
ing that observers were near floor when trying to adjust 
to the outlier face. On the other hand, performance in the 
popout condition (i.e., red box highlighting the outliers) 
was significantly better than that in the outlier condition 
(bootstrap test, p  .01). This supports the idea that the 
deviant expressions (outliers) did not pop out. This pattern 
was consistent across the 3 observers.

Interestingly, performance for homogeneous discrimi-
nation (i.e., adjusting to a single test face in a known loca-
tion in the set) was still significantly better than perfor-
mance in the popout condition (see Figure 4B; p  .05). 
This suggests that, even when the elements of the set pop 
out, such popout does not confer the same performance 
advantage that knowing the actual target location does. 
This further weakens the argument that observers could 
have a robust representation of sampled elements, identify 
the deviants, and then consciously remove them from their 
estimate of the average expression.

Despite the observers’ generally poor performance in 
the outlier condition, it may be possible to calculate an 
upper estimate of what proportion of the time the outli-
ers could have popped out. Here, the no-outlier condition 
(catch trials) displayed stimuli that could never pop out, 
whereas the popout condition (outliers surrounded in red 
boxes) displayed stimuli that should pop out consistently. 
In order to estimate the proportion of trials in which the tar-

tent, outlier information in the set. Figure 3A shows that, 
when the outliers are negative, adjustment to the global 
mean is offset in the positive direction. The peak of the 
adjustment curve corresponds closely to where the local 
mean occurs (i.e., the mean when outliers are excluded), 
approximately 10 emotional units above the global mean. 
The converse is also true (see Figure 3A). This trend is 
consistent among all observers, and paired t tests confirm 
that the absolute offset (the a parameter from the Von 
Mises equation; how far away from 0 the curve peaks) 
is larger for outliers in the global mean adjustment curve 
than for those in the local mean adjustment curve [t(4)  
4.20, p  .014].

One might expect that, if the analysis were broken down 
by the sign of the outlier, there would be a disproportion-
ate amount of observer responses corresponding to the lo-
cation of the outlier, relative to the region where there was 
no outlier. However, a paired t test examining the propor-
tion of responses that occurred in the outlier regions with 
those that occurred in the antioutlier regions revealed no 
difference [t(10)  0.76, p  .31]1 (see Figure 3B). This 
indicates that, after viewing a set with an outlier, observ-
ers were not more likely to pick a face near the outlier than 
they were to pick a face far from the outlier. This defini-
tively rules out the possibility that observers subsampled 
only one item from the entire set, since, had this been the 
case, there would have been a greater number of responses 
in the outlier region than in the antioutlier region. Sub-
sampling is further explored in Experiment 2.

This experiment demonstrated that observers have 
greater sensitivity to the local mean of the set than to the 
global mean, and therefore seem to discount the emotional 
outliers. The value of a summary statistic, such as aver-
age texture, orientation, motion, or facial expression, is 
only useful insofar as it captures ensemble information 
in the stimulus. Outliers disrupt ensemble information by 
increasing set variance; therefore, discounting the deviant 
information might be advantageous. Outlier discounting 
is a computationally simple way to mitigate variance and 
increase the reliability of a summary statistic, such as av-
erage expression.

EXPERIMENT 1B

It is possible that, instead of implicitly filtering deviant 
information, observers were aware of the presence of the 
outliers on every trial and consciously ignored them in 
their estimate of the average expression. Such a strategy 
would indicate that the emotional outliers can be detected 
and may even pop out relative to the rest of the faces, 
which could undermine the computational efficiency with 
which ensemble coding is thought to operate (Alvarez & 
Oliva, 2009). Although some work suggests that emotion-
ally deviant information is not available preattentively 
(Nothdurft, 1993), there is at least some (controversial) 
evidence to suggest that it is (Hansen & Hansen, 1988). 
Even if observers did not detect the emotional deviance 
in a parallel fashion, other low-level features may have 
distinguished the outlier faces. In a separate control ex-
periment, we explicitly tested whether the outlier faces 
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tive) estimate of the proportion of trials in which the out-
lier could have popped out (1  intercept). It is evident 
that, for each observer, the outliers popped out a small 
fraction of the time (average ~10% of the trials, at most; 
see Figure 4C). This frequency of popout (even though it 
is not significant, on average, as revealed in Figure 4B) is 
not sufficient to account for the degree of outlier discount-
ing (narrowing of the error distribution around the local 
mean) that is shown in Figure 2.

The evidence presented here suggests that observers 
had very little if any explicit knowledge of the outlier 

gets could have effectively popped out in the outlier condi-
tion, we modeled observer performance by bootstrapping 
various combinations of no-outlier and popout trials (e.g., 
10% popout condition, 90% no-outlier condition). We did 
this 1,000 times for each of 10 possible relative propor-
tions and calculated the MSe for each sample (as described 
above) and averaged across all of the samples. As is shown 
in Figure 4C, the larger the proportion of no-outlier trials 
in the sample (fewer popout trials), the larger the MSe. The 
point at which an observer’s outlier condition performance 
intersects the modeled data provides an upper (conserva-
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Figure 4. Stimuli and results from Experiment 1B. (A) The three conditions observers saw were sets with no outliers (catch trials), sets 
with outliers, and sets with red boxes around the outliers. Observers were only aware of the latter two conditions. (B) MSe for 3 observ-
ers. Performance on outlier adjustment did not differ from performance on the catch trials; popout performance was substantially 
better. (C) Model used to test the proportion of outlier trials that actually popped out. Trials were randomly selected and combined in 
varying proportions from both the no-outlier trials and the popout trials, and, from this hybrid condition, MSe was calculated 1,000 
times. The larger the proportion of no-outlier trials, the larger the MSe (i.e., the worse the performance). The dotted line corresponds 
to actual observer performance on outlier adjustment. Note that the intersection point suggests that the outliers popped out less than, 
on average, only ~10% of the time.
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sampled from the set of 12. The sampled faces, perturbed by noise, 
were then averaged to calculate the modeled mean on a single trial. 
The difference between the modeled mean and the true mean of the 
set gives an error score. This was repeated 8,000 times in a Monte 
Carlo simulation to generate a complete error distribution. Separate 
Monte Carlo simulations were run to model an observer sampling 
1–10 faces from the set of 12.

The Monte Carlo-modeled error distributions were compared 
with the actual observer error distributions (i.e., the error distribu-
tions were calculated relative to the local mean, since observers 
were more sensitive to the local mean; Experiment 1A). In this way, 
we could determine whether the rote sampling of any number of 
items could predict observer performance from Experiment 1. It is 
tempting to use this model as an index of the amount of information 
necessary for matching the ensemble coding ability seen in observ-
ers. We caution against this, however, since it is conceivable that, if 
observers were not samplers, no sampling condition in the model 
would adequately explain observer performance. Although we do 
not use this model to characterize the amount of information observ-
ers derive on a given trial, these results are critical to addressing the 
legitimate concerns raised by Myczek and Simons’s (2008) model, 
with regard to average size.

Note that the modeling is conservative, since the averaging pro-
cedure functions as an ideal observer, perfectly averaging noisy in-
dividual face representations. Although a late-noise-averaging com-
ponent seems essential (Parkes et al., 2001), it is difficult to know 
exactly the nature of that noise. Thus, the model in its current form is 
most useful for the purposes of visualization and is conservative.

Results and Discussion
Figure 5 shows the error distributions for the models 

that sampled 1–10 faces, overlaid with the actual error 
distributions, averaged across the group of observers. 
Each modeled curve represents expected performance 
of an observer who perfectly averages N noisy samples 
from the set. Visual inspection of Figure 5 reveals that the 
model that sampled 1 face did not adequately simulate 
observer performance. The sampling-1-face model occa-
sionally sampled one of the emotional outliers, producing 
large bumps located far from the mean expression that 
observers’ data did not exhibit (Figure 5). This confirms 
the analysis in Figure 3B—that is, that observers were not 
more likely to choose the outlier than the antioutlier in the 
set—showing that observers did not base decisions on a 
single sampled face.

As the model takes more samples, obvious differences 
between simulated and observer performance remain. 
One may wonder why, as the model samples more and 
more items, it does not approach a perfect mean repre-
sentation of the set. The outlier that the model samples 
biases the mean representation, which explains the char-
acteristic bumps in nearly all of the sampling conditions. 
As the number of samples increases, the bumps steadily 
move closer to the mean of the set, since the impact of the 
outliers is somewhat mitigated by the multiple nonout-
lier samples. However, the model’s strength in sampling 
is also its undoing: As the model samples more items, the 
probability of encountering an outlier approaches 100%, 
and the presence of that outlier will always shift the mean 
representation away from the actual mean (in either a posi-
tive or negative direction). Thus, the model does not effec-
tively capture observer behavior, leading us to conclude 
that observers do not engage in a rote sampling strategy.

face, which supports the conclusion that the visual system 
implicitly and rapidly filtered the deviant information in 
order to achieve a more parsimonious set representation.

EXPERIMENT 2A

Experiment 1 demonstrated a greater sensitivity to the 
local mean of a set than to the global mean when emo-
tional outliers were present in the set. Additionally, it re-
vealed that observers could not consciously discount the 
expressions that deviated from the rest of the set, since 
they were not aware of those expressions on most trials. 
Whereas this suggests that the visual system discounts 
objects that cannot be integrated into the context of the set 
(due to increased variance), one counterargument may be 
that the visual system is simply sampling from the set. An 
estimate of average expression may be well captured by 
only a couple of samples. This sampling hypothesis would 
be consistent with serial mechanisms of attention and was 
recently postulated by Myczek and Simons (2008) in re-
sponse to research on average size discrimination. Their 
model suggests that extant data on average size do not 
necessitate a novel averaging mechanism, since sampling 
and averaging only a couple of set items proved sufficient 
to explain perception of average size. Despite matching 
human performance for many of the experiments re-
ported in previous studies (Ariely, 2001; Chong & Treis-
man, 2003, 2005), their model only addresses average 
size. They did not test their model against sets of faces, 
or, more important, against sets containing outliers. How-
ever, the possibility of subsampling remains an important 
consideration for research on average expression.

In the present study, we created a model similar to the 
Myczek and Simons (2008) model that calculated a mean 
emotion from the sampling of 1–10 items from a set con-
taining outliers. We predicted that outliers would pose dif-
ficulties for a sampling model, since the model simply av-
eraged the information it gathered. Any outlier included in 
the sample would pull the model’s calculated mean away 
from the actual mean. The purpose of this modeling pro-
cedure was to determine whether sampling a small subset 
would be sufficient to predict human performance on ex-
pression averaging.

Method
Procedure. This modeling was an attempt to visualize boot-

strapped performance of a realistic (noisy) observer who averages 
some number of samples. Our model sampled 1–10 faces from the 
set of 12 (which contained outliers) on every trial, similar to the 
model of Myczek and Simons (2008). However, before averaging 
the sampled faces as an ideal observer would (e.g., if Face 10 and 
Face 16 were sampled, the ideal observer average would be Face 13), 
each sample selected by the model was perturbed by independent 
noise. The noise distribution was derived from the discrimination 
performance of each observer and was implemented to more ac-
curately reflect natural perceptual and motor noise. We assessed 
this observer discrimination ability using the same MOA procedure 
described in Experiment 1, but for single face images. Observers 
simply adjusted the test face to match a single prespecified face in 
the set (rather than the mean). We then used the error distribution 
from this single-face adjustment task (i.e., how far observers were 
from the single expression) to perturb each face that the model had 
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Figure 5. Experiment 2A’s results, including a comparison of observer performance and model performance when averaging 1–10 
samples. When taking fewer samples from the set, the model’s assessment of the mean (solid line) suffers because of the outliers. Ob-
server performance is not as adversely affected by the outliers. The gray areas highlight the bins of comparison between the model and 
the observer. Note that, when more than seven samples are taken, the difference between model and observer is no longer significant.
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trials each, giving a total of 1,000 trials (250 trials for each sampling 
condition, 1–4) per participant.

Results and Discussion
We assessed the precision of mean representation by 

calculating the MSe of the adjustment error distribution 
for each sampling condition (see Figure 6). Similar to the 
SD of the Von Mises distribution (but without the neces-
sary assumptions), MSe reflects how far, on average, ob-
servers were from the actual set mean: The lower the MSe, 
the more accurate the mean representation. The results 
suggest a nonlinear pattern of mean discrimination perfor-
mance, where viewing additional samples (2 or 3) actually 
hurt performance up to a point, after which mean discrim-
ination improved. Critically, performance when viewing 
the whole set of 12 items (data from Experiment 1) was 
best, suggesting that a simple sampling strategy (at least 
for 4 or fewer items) did not account for observer per-
formance. There was a significant difference among the 
sampling conditions [Friedman test: 2  10.2(4), p  
.037]. Pairwise Wilcoxon signed rank comparisons re-
vealed that performance for Sampling Conditions 1–3 was 
significantly different from performance for the whole set 
of 12; that is, every observer had better mean representa-
tion when presented with sets of 12 faces (z  1.83, 
p  .034, one-tailed). Only Sampling Condition 4 was not 
significantly different from 12.

One may wonder why the data in Figure 6 are nonlinear. 
The reason is probabilistic and mundane. Observers were 
asked to adjust the test face to the mean of the entire set, 
given limited information. When a single face from the 
set was viewed, the probability of that sample being an 
outlier was roughly 17%. The rest of the time, the sample 
would be relatively close to the mean, yielding reasonable 

It was clear from the model’s performance when sam-
pling one face that a Von Mises distribution would not be 
an appropriate fit to the error distribution and is therefore 
not considered further as a viable assessment of the mod-
el’s performance. Instead, we used a priori-defined bins to 
formally compare the model with the observer in each of 
the sampling conditions. The center of each bin was de-
fined by the expected mean when the model encountered 
an outlier given N samples. For example, in the sample-
three-items condition, the predicted mean representation 
when the model samples an outlier is 20 units (the out-
lier is 60, and the other two samples will, on average, 
be 0). This is indeed the case, as shown in the Sample 3 
panel of Figure 5: There are bumps in the model error dis-
tribution at 20 units. The size of the bin was determined 
by the width at three fourths of the maximum of the group 
homogeneous adjustment curve (i.e., adjusted to a single 
known face in the set), which was approximately 11 emo-
tional units. We used Bonferroni-corrected paired t tests to 
assess the proportion of trials in the model to the propor-
tion of trials for the observers in those specified regions 
(shaded in each panel). Given 10 sampling conditions, our 
alpha level was set at p  .005. For Sampling Conditions 
1–7, observers had significantly fewer responses in those 
regions than did the model, supporting the contention that 
the outlier had more of a differential impact on the model 
than on the observers. Of course, this does not imply that 
observers derived seven items’ worth of information; it 
merely contrasts observers’ performance with that of the 
model. Observers are not rote samplers. Unlike the model, 
they implicitly discount the deviant information in favor 
of the local mean.

Although the model itself does not provide an index 
of the amount of information observers derive from the 
set, such a measure would be valuable. We addressed this 
in Experiment 2B, where we had observers perform the 
behavioral equivalent of the model.

EXPERIMENT 2B

The purpose of Experiment 2B was to provide a be-
haviorally relevant index of the amount of information 
observers could accumulate about the average expression 
in a set of faces. To accomplish this, we assessed how well 
observers could adjust to the average of the set of faces 
when only a subset of the faces was visible.

Method
Stimuli and Procedure. The stimuli were identical to those in 

the first experiment, except that 8, 9, 10, or 11 of the faces in the 
set were randomly removed from the display. That is, only 1, 2, 3, 
or 4 faces from the set were visible on each trial. The task was also 
identical to that in the first experiment: Observers were instructed 
to adjust the test face to match the average expression in the set of 
1–4 visible faces—a procedure somewhat similar to that used in 
an experiment conducted by Chong et al. (2008). The visible faces 
were always presented in the same positions on the grid, closest to 
the center of the screen, while all other faces were invisible. As in 
Experiment 1, observers had only 250 msec to view the face(s) and 
unlimited time to adjust the test face to the perceived mean of the set. 
Four observers (all from Experiment 1) performed five runs of 200 
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Figure 6. Experiment 2B’s results, including observer perfor-
mance when viewing 1–4 faces from the set, as compared with 
performance when viewing all 12 items. After an initial increase 
in MSe (decreased mean discrimination performance), there is a 
significant decrease in MSe as more information becomes avail-
able to observers. Observers adjusted the test face to the aver-
age facial expression best when all 12 face images in the set were 
visible.
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observers may have engaged a weighted averaging pro-
cess, whereby deviant information was incorporated into 
the mean, but at a discount. We tested these alternatives 
by reanalyzing the adjustment data from Experiment 1, 
in which observers adjusted a test face to match the per-
ceived mean of a set of 12. We applied a series of weights 
to the outlier faces, measuring performance (the adjust-
ment error distribution) for each weight. The weighting 
scheme ranged from 0% ( perfect local mean represen-
tation) to 100% ( perfect global mean representation) at 
approximately 11% increments. As an illustration of how 
this method was implemented, take trial N, which has a 
local mean value of 100 and a global mean value of 110. 
The first weighting scheme would examine observer and 
model performance relative to a set mean of 101 (i.e., 
~11% weighting of the outliers). The second weighting 
scheme would make the same comparisons relative to a 
set mean of 102 (~22% outlier weighting), and so on. By 
manipulating the weights, we simulated different levels of 
outlier suppression.

To assess mean discrimination performance at each 
weight, we calculated the MSe (normalized to the grand 
mean) of the adjustment error distribution for each ob-
server. The results of this analysis are plotted in Fig-
ure 7A, along with a fitted quadratic function (fit to all 
observers in Experiment 1). The U-shaped function that 
resulted from this analysis suggests that MSe was reduced 
(i.e., an increase in mean representation precision) when 
some weight was given to the outliers (~55%). However, 
MSe was higher if we assume that outliers were completely 
ignored or, conversely, were completely incorporated into 
the judgment of the mean expression, suggesting that the 
outliers were somewhat (but not entirely) discounted. 
Thus, some amount of filtering or discounting occurred 
as observers attempted to extract the mean expression.

Note that we also applied this outlier-weighting simula-
tion to the sampling model described in Experiment 2A. 
For each of the model conditions (i.e., N faces sampled), 
we examined MSe from 0% outlier weighting to 100% 
outlier weighting in 11% increments (Figure 7B). The 
pattern of data across all conditions was strikingly consis-
tent, showing monotonically decreasing MSe as the model 
increasingly weighted the outliers. This result emerged 
without regard to the number of sampled faces (1–10). 
This is in contrast to the pattern of results seen for observ-
ers, which showed the lowest average MSe at a weighting 
of around 55% (Figure 7A). More intuitively, the simu-
lations reported in Figure 7 reveal that, if participants 
were performing the task by sampling individual faces 
and averaging them (ideally or with added noise), they 
should have been more accurate when measured against 
the global mean than the local mean. This did not happen. 
This differential pattern of performance further discredits 
the idea that observers engage a cognitive sampling strat-
egy when judging average expression in sets of faces. 

Discussion
The experiments show that observers accurately per-

ceived the average expression in a crowd of faces and did 
do so even when there were outlier faces present. Observ-

mean discrimination performance (although not as good 
as when the whole set was viewed). However, when two 
samples from the set were viewed, the probability of en-
countering an outlier more than doubled (to around 34%; 
see Table 1 for the probabilities of encountering an out-
lier given N samples), further compromising local mean 
representation. Once the number of samples was large 
enough (e.g., four), the negative impact of the outliers 
was mitigated.

These results suggest that, in order to match observer 
performance when adjusting to the mean of a set of 12 
faces, observers must collect at least 4 faces’ worth of in-
formation. In contrast to the model described above, this 
task actually provides an index of information content. 
That is an impressive amount of information, given that 
observers had only 250 msec to view a set, and considering 
that observers were not capable of recalling the specific 
faces that composed the set (Haberman & Whitney, 2007). 
Although some iconic representation may have persisted 
beyond the 250-msec display (Sperling, 1960), our pre-
vious work showed that observers retained no informa-
tion about the set constituents, even when there were only 
4 faces on the screen displayed for 2,000 msec (Haber-
man & Whitney, 2007). This suggests that iconic memory 
confers little benefit in extracting additional information 
about the individuals. Furthermore, 4 faces is beyond the 
visual short-term memory (VSTM) capacity for these face 
stimuli (Haberman & Whitney, 2007, 2009).

These data also support the conclusions of the mod-
eling in Experiment 2A. Although observers derive the 
equivalent of at least four faces, we cannot distinguish 
whether that corresponds to four discrete face representa-
tions or four faces’ worth of information coarsely distrib-
uted across the entire set.

EXPERIMENT 3

In Experiment 1, we determined that observers were 
more sensitive to the local mean than to the global mean 
(Figure 2). However, we do not know whether this in-
creased sensitivity reflects a complete suppression of out-
lier information or a partial discount. It is possible that, 
because the emotional outliers were so far removed from 
the rest of the faces, they could not be integrated into the 
context of the set and were thus suppressed. Alternatively, 
if observers coarsely represented several faces in the set, 

Table 1 
Probability of Sampling an Outlier

 N Samples  Exactly One Outlier  Exactly Two Outliers  

 1 .17 N/A
 2 .30 .02
 3 .41 .05
 4 .48 .09
 5 .53 .15
 6 .55 .23
 7 .53 .32
 8 .48 .42
 9 .41 .55

 10  .30  .68  
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It is true that observers might quickly sample a subset 
of more than four faces, implicitly discount the outliers, 
and then automatically compute the mean from the re-
maining samples. Such a process describes the data, but 
it characterizes the putatively automatic ensemble motion 
and texture perception better than it describes a cognitive 
or intentional search mechanism. Sampling N items, by 
definition, has to provide one with the solution eventu-
ally. This same principle applies to most domains of visual 
processing; texture and motion perception, for example, 
can be accounted for by calculating the effective number 
of sampled stimuli. Yet, there is no debate surrounding 
whether texture or motion perception depends on a cog-
nitive, guided search process. That is, the possibility of 
subsampling, per se, should not be taken as evidence of a 
cognitive, serial, or attentional mechanism. We have pro-
vided evidence pointing toward a rapid process, in which 
deviant information is implicitly filtered or discounted in 
an effort to derive a precise estimate of the mean.

Although faces represent a distinctly higher level of 
processing (Tanaka & Farah, 1993; Young, Hellawell, & 
Hay, 1987), our results suggest that groups of faces are 
processed in a manner similar to groups of oriented lines, 
moving dots, textured elements, and other low-level fea-
tures; sets of faces form a kind of texture, where the indi-
vidual face representations are lost (Experiment 1B; see 
also Haberman & Whitney, 2007, 2009), but the facial 
group, as a gestalt, is maintained.

Our results are particularly interesting in the context of 
some recent work in the average size domain (de Fockert & 
Marchant, 2008) and may serve to further distinguish av-
erage size perception from average expression perception. 

ers more precisely represented the local mean of the set, 
suggesting that the emotional outliers were heavily dis-
counted. Figure 3 shows that, when the analysis is broken 
down by the sign of the outlier, there was little influence 
of the outlier, because observers unequivocally adjusted 
to the local mean. Critically, when the outliers were 60 
units above the mean, there was no significant difference 
in the number of observer responses at or near that posi-
tive region, as compared with the corresponding negative 
region. The converse was also true. This definitively rules 
out the possibility that observers derived only one face 
from the set, since that would have resulted in a dispropor-
tionate number of responses on one side of the distribution 
(i.e., near the outliers).

We additionally ran Monte Carlo simulations, which re-
vealed that observers did not employ a rote sampling strat-
egy from the set. These experiments reinforce the find-
ings that observers derive robust summary representations 
from crowds of faces (Haberman & Whitney, 2007, 2009). 
The results established that a sampling strategy, in which 
one or two items from the entire array is selected, cannot 
account for observer mean representation precision.

Although it is clear that observers do not behave as rote 
samplers, is it possible that observers still sample from 
the set, but in an intelligent manner, perhaps cognitively 
searching for and excluding the outliers? Experiment 2B 
suggests that observers derived at least four faces’ worth 
of information from the set, and Experiment 1B demon-
strated that observers had almost no explicit knowledge of 
the outliers, suggesting that the guided (cognitive or intel-
ligent) search model is unlikely to explain the ensemble 
perception here.
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DISCOUNTING EMOTIONAL DEVIANTS    1837

adverse effects of outliers. The mode might also work; it 
offers a winner-take-all method of deriving a summary, 
which would automatically discount the deviants. One 
way to identify more precisely what measure of central 
tendency (mean, median, or mode) the visual system ex-
tracts would be to skew the distribution of the sets (Chong 
& Treisman, 2003). Computational modeling akin to that 
described in Experiment 2A would also be an effective 
method of addressing this question in future studies.

Regardless of which summary statistic is being repre-
sented (weighted mean, median, or some hybrid), the data 
here suggest a remarkably fast and flexible process. The 
visual system is summarizing more than four faces’ worth 
of information in as little as 250 msec (16 Hz). This speed 
is impressive, given that attentional dwell time is estimated 
at between 200 and 500 msec (Duncan, Ward, & Shapiro, 
1994; Wolfe, 2003), serially searching through sets of faces 
takes between 70 and 150 msec per face (Nothdurft, 1993; 
Tong & Nakayama, 1999), and observers have no VSTM 
of any of the specific faces that compose the sets (Ha-
berman et al., 2009; Haberman & Whitney, 2007, 2009). 
Although visual attention may process several objects si-
multaneously (Wolfe, 2003), our results demonstrate that 
what emerges is not a representation of any individual face 
but an entirely novel summary percept.
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