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Optimal multisensory integration 
leads to optimal time estimation
Yuki Murai1,2 & Yuko Yotsumoto3

Our brain compensates sensory uncertainty by combining multisensory information derived from an 
event, and by integrating the current sensory signal with the prior knowledge about the statistical 
structure of previous events. There is growing evidence that both strategies are statistically optimal; 
however, how these two stages of information integration interact and shape an optimal percept 
remains an open question. In the present study, we investigated the perception of time as an amodal 
perceptual attribute. The central tendency, a phenomenon of biasing the current percept toward 
previous stimuli, is used to quantify and model how the prior information affects the current timing 
behavior. We measured the timing sensitivity and the central tendency for unisensory and multisensory 
stimuli with sensory uncertainty systematically manipulated by adding noise. Psychophysical 
results demonstrate that the central tendency increases as the uncertainty increases, and that the 
multisensory timing improves both the timing sensitivity and the central tendency bias compared to the 
unisensory timing. Computational models indicate that the optimal multisensory integration precedes 
the optimal integration of prior information causing the central tendency. Our findings suggest that our 
brain incorporates the multisensory information and prior knowledge in a statistically optimal manner 
to realize precise and accurate timing behavior.

From speech generation to music performance, many sensorimotor behaviors in daily life require accurate coding 
of event duration1. However, sensory information available for organisms is sometimes too noisy and impover-
ished to perceive the world as stable, and to make appropriate decisions2. Indeed, many studies have demonstrated 
that our brain utilizes various cues to estimate duration3–6. In particular, a considerable number of researchers 
have investigated how the perception of duration relies on information integration from multiple signal sources7.

One strategy in compensating for sensory uncertainties is to integrate redundant sensory information8. Since 
events in the outer world often generate multiple sensory signals, the timing system can estimate duration effi-
ciently by collating information from different sensory modalities9,10.

In addition to the information redundancy occurring from one same event, the timing system can also utilize 
a statistical structure of previous events. The central tendency is a representative example of how the past tempo-
ral information has an impact on the current time perception: the percept of current stimulus duration is biased 
towards the mean of the previously presented durations11,12. The central tendency suggests that our brain stores 
the past information and biases the current sensory input under the assumption that the current event is likely to 
have similar characteristics with the statistical patterns of previous events.

Previous studies have demonstrated that our brain adopts a statistically optimal strategy both for the mul-
tisensory integration13,14 and the central tendency15,16. A stimulus feature defined by multiple sensory signals 
is optimally estimated by taking a weighted average of the unisensory estimates. For example, the visual infor-
mation is more weighted than the auditory or haptic information to perceive stimulus location because vision 
has a higher spatial sensitivity than audition or touch. However, if the visual information is degraded by blur-
ring stimulus or by adding noise, the weights of other modalities increase13,14. That is, multisensory signals are 
integrated depending on how reliable each modality’s information is. Similarly, the central tendency has been 
explained computationally from a Bayesian perspective7. The Bayesian model of time perception assumes that the 
timing system in the brain utilizes the distribution of previously presented durations as a prior information and 
estimates the current stimulus duration optimally by combining the prior information and the current sensory 
likelihood15,17. This Bayesian model predicts that the prior information has a larger effect on the time estimation 
when the current sensory input is unreliable. The computational strategies in the multisensory integration and in 
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the central tendency have a common feature that the statistical optimality is obtained depending on the sensory 
uncertainty of events.

If the purpose of the timing behavior in daily life is to estimate time as accurately and precisely as possible, 
the optimal solution of time estimation should be to utilize as much information as possible. To this goal, the 
brain should somehow combine the prior information and the current sensory redundancy. However, it is highly 
debatable how different sources of temporal information interact and realize an optimal timing behavior. While 
conventional models of time perception assume the presence of a modality-independent central clock18,19, some 
researchers have suggested that the timing system in the brain is more distributed across local neural circuits and 
not necessarily integrated optimally. Heron et al. (2013) suggested that an adaptation-based hysteretic effect of 
time perception precedes multisensory integration20. Burr et al. (2009) demonstrated that the auditory modality 
dominates time perception over the visual modality, and that the multisensory integration of time is suboptimal21. 
On the other hand, other researchers have advocated a modality-independent central process contributing to 
time perception and its prior formation. Roach et al. (2017) suggested that the prior information can be general-
ized across sensory modalities22. Stauffer et al. (2012) proposed a hierarchical structure of modality-dependent 
and modality-independent temporal processing23.

Previous studies have not directly investigated the central tendency for multisensory stimuli. Thus, how the 
sensory redundancy and the prior information are integrated to realize an optimal timing behavior still remains 
unclear. The present study aims to elucidate how the multisensory integration affects the timing sensitivity 
and the bias resulting from the central tendency. We systematically manipulated the sensory uncertainty for 
unisensory and multisensory stimuli by adding sensory noise, and examined how the sensory uncertainty in 
each modality impacts the multisensory timing sensitivity and bias. The experiment consisted of two tasks: the 
duration discrimination task, and the duration reproduction task. We measured the timing sensitivity by the 
duration discrimination task (Fig. 1a) and the central tendency by the duration reproduction task (Fig. 1b) with 
the signal-to-noise ratio manipulated across modalities by using the threshold values obtained in the preliminary 
detection threshold experiment (Fig. 1c). The behavioral data and our computational model demonstrate that 
two sources of contextual information –prior information and sensory redundancy– are optimally integrated.

Results
Sensory uncertainty impairs sensitivity and increases bias. We first examined how the sensory 
uncertainty affects the timing sensitivity for unisensory stimuli. The timing sensitivity was measured by fitting the 
cumulative normal function to the data of the discrimination task (Fig. 2a,b) and calculating the Weber fraction. 
For both visual and auditory stimuli, the Weber fraction increased as the noise intensity increased (Fig. 2c). A 
two-way repeated-measures ANOVA, with noise level (high, low, or no) and sensory modality (visual or auditory) 
as factors, revealed a significant main effect of noise level (F (2,36) = 17.5, p < 0.001) but no significant main effect 
of stimulus modality (F (1,36) = 1.99, p = 0.17) and no significant interaction (F (2,36) = 0.42, p = 0.66). This 
result indicates that a larger sensory noise impairs the timing sensitivity in both modalities.

We next quantified the central tendency in the reproduction task by linearly regressing the reproduced dura-
tion to the stimulus duration (Fig. 3a,b). The slopes of the linear regressions were compared across conditions 
as indices of the central tendency. For example, if stimulus durations were reproduced veridically then the slope 
should be 1. However, if the central tendency occurred and the duration estimates were biased toward the mean, 
the slope value should be smaller than 1. Along with the decrement in sensitivity for noisier stimuli, the central 
tendency bias increased for such stimuli. For both visual and auditory stimuli, the regression slope decreased as 
the noise intensity increased (Fig. 3c). A two-way repeated-measures ANOVA, with noise level (high, low, no) 
and sensory modality (visual or auditory) as factors, revealed significant main effects of noise level (F (2,36) = 6.2, 
p = 0.005) and stimulus modality (F (1,36) = 17.35, p < 0.001), and no significant interaction (F (2,36) = 0.19, 
p = 0.83). Consistent with previous studies, the central tendency was weaker in the auditory domain than in the 
visual domain16,24.

Although the reproduction error we focus in the present study is the central tendency bias, it has 
also been reported that subjects overestimate or underestimate stimulus durations overall due to various 
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Figure 1. Schematics of the experiments. (a) Experimental procedure of the duration discrimination task. 
Three brief flashes or tones were sequentially presented, and subjects judged whether the first was longer or 
shorter than the second. The order of standard and comparison stimuli was counter-balanced. (b) Experimental 
procedure of the duration reproduction task. Two brief flashes or tones were sequentially presented, and 
subjects pressed buttons to reproduce the duration. A sensory feedback was presented immediately after the 
subjects’ responses. (c) An example of noise manipulation for visual stimuli. The background noise intensity was 
0.66 (High), 0.22 (Low) or 0 (No) times the threshold noise level measured in the detection threshold task (see 
Methods section).
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modality-dependent effects7. In a further analysis, we estimated the overall reproduction error by calculating 
the difference between the mean of reproduced durations and that of stimulus durations. If the central tendency 
is the only source of reproduction bias, the grand mean of reproduced durations should be equal to the physical 
mean of stimulus durations, regardless of the central tendency. In actuality, the visual durations were signifi-
cantly overestimated (Supplementary Fig. 1). A two-way repeated-measures ANOVA, with noise level (high, 
low, no) and sensory modality (visual or auditory) as factors, revealed a significant main effect of noise level 
(F (2,36) = 12.3, p = 0.001) and stimulus modality (F (1,36) = 66.3, p < 0.001), and no significant interaction (F 
(2,36) < 0.02, p = 0.98).

Multisensory integration improves sensitivity and decreases bias. How does the multisensory 
integration affect the timing sensitivity and the central tendency? To examine how the sensory uncertainty in each 
modality affects the multisensory timing behavior, we measured the timing sensitivity and the central tendency 
for three combinations of visual and auditory noise levels: high visual and high auditory noise, high visual and 
low auditory noise, and low visual and high auditory noise. We used these three conditions to observe the timing 
behavior when two sensory information are equivalently noisy, or one modality is more reliable. Figure 4a–d 
show the audiovisual timing sensitivities for these three conditions (high visual and high auditory noise in Fig. 4b; 
high visual and low auditory noise in Fig. 4c; low visual and high auditory noise in Fig. 4d) in relation to the 
unisensory timing sensitivity. The multisensory Weber fraction was significantly lower than the lower Weber 
fraction of the two modalities in all of three conditions (p < 0.001, Cohen’s d = 2.67 for Fig. 4b; p = 0.028, d = 0.86 
for Fig. 4c; p < 0.001, d = 1.30 for Fig. 4d; p-values were obtained by bootstrap tests with Bonferroni-correction 
for three comparisons). When the timing sensitivities between two modalities differed substantially (Fig. 4c,d), 
the audiovisual sensitivity was closer to the sensitivity for more reliable (less noisy) unisensory timing.

Figure 4e–h similarly show the audiovisual central tendencies for high visual and high auditory noise in 
Fig. 4f, high visual and low auditory noise in Fig. 4g, and low visual and high auditory noise in Fig. 4h. Along with 
the improvement in sensitivity, the audiovisual timing decreased the bias due to the central tendency. The multi-
sensory central tendency was significantly smaller than the smaller central tendency of the two modalities in all 
of three conditions (p < 0.001, d = 2.29 for Fig. 4f; p = 0.004, d = 1.01 for Fig. 4g; p < 0.001, d = 1.40 for Fig. 4h; 
p-values were obtained by bootstrap tests with Bonferroni-correction for three comparisons). When the central 
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Figure 2. Sensory uncertainty impairs timing sensitivity. Psychometric functions of visual (a) and auditory (b) 
durations for a typical subject. The probabilities at which the subject judged that the comparison (450–900 ms) 
was longer than the standard (640 ms) were plotted, and fitted to the psychometric function. The discrimination 
sensitivity was defined by the Weber fraction, which is the ratio of the just noticeable difference (JND) to the 
standard. (c) Group results of Weber fractions for visual and auditory unisensory timing across modalities and 
different noise levels. Error bars indicate the standard error of the mean (SEM).
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Figure 3. Sensory uncertainty increases central tendency. A typical subject’s data for visual (a) and auditory 
(b) stimuli. To quantify the central tendency, reproduced durations are linearly fitted to stimulus durations. A 
smaller slope value means a larger central tendency. Each dot represents reproduced duration in one trial. (c) 
Group results of the central tendency across modalities and noise levels. The regression slope smaller than 1 
means the central tendency occurred. Error bars indicate SEM.
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tendencies between two modalities differed substantially (i.e., high visual and low auditory noise in Fig. 4g), the 
decrement in the central tendency was smaller than when the central tendencies between the two modalities were 
comparable.

The overall reproduction biases were fairly small for audiovisual stimuli (Supplementary Fig. 2), and no 
significant deviations from the physical mean of stimulus durations were observed in all conditions (p = 0.50 
for Fig. S2a; p = 0.99 for Fig. S2b; p = 0.63 for Fig. S2c; p-values were obtained by bootstrap tests with 
Bonferroni-correction for three comparisons).

Optimal multisensory integration in timing sensitivity. Such patterns of multisensory integration 
could be computationally accounted for in terms of statistical optimality. Some studies have suggested that the 
multisensory estimate of a given sensory feature (e.g., location, size) is integrated in a statistically optimal man-
ner, that is called the maximum likelihood estimation, by taking a weighted average of unisensory estimates13,14. 
When visual and auditory signals are integrated, the audiovisual estimate is given as the following equation:

= +S w S w S (1)AV A A V V

where S denotes the unisensory or multisensory estimate of the sensory feature, and w denotes the weighting 
coefficient. The weighting coefficient for each sensory modality is determined based on the reliability (sensitivity) 
of sensory signals:
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where σ2 represents the variance of the estimate. This integration strategy derives the smallest variance for the 
multisensory estimate, and is thus called “statistically optimal”:

σ σ σ= +− − − (3)AV A V
2 2 2

We tried to predict the timing sensitivity for audiovisual stimuli from the timing sensitivity for visual and 
auditory unisensory stimuli. In the present study, the timing sensitivity was obtained as Weber fractions that are 
proportional to the standard deviation of psychometric function. Thus, the optimal Weber fraction for multi-
modal timing is given by transforming the equation (3):
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This equation means that the optimal multisensory integration predicts the improvement of timing sensi-
tivity for multisensory stimuli compared to the unisensory stimuli, which is exactly what we found. Consistent 
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Figure 4. Unisensory and multisensory Weber fractions (WF; (a–d)) and central tendencies (CT; (e–h)). 
A typical subject’s psychometric functions (a) and reproduction data (e) for audiovisual stimuli. Legends in 
each panel show a combination of visual and auditory noise levels: (b,f), high visual noise and low auditory 
noise (c,g), and low visual noise and high auditory noise (d,h). Open circles denote unisensory WFs and CTs 
replotted from Figs 2c and 3c. Filled circles denote WFs and CTs for audiovisual stimuli. Error bars indicate 
SEM.
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with previous studies9,21, the multisensory Weber fraction was smaller than the unisensory Weber fraction, as 
described in the previous section. Figure 5 compares the predicted Weber fractions calculated by the above equa-
tion and the experimentally measured Weber fractions. The predicted and measured Weber fractions were signif-
icantly correlated (r = 0.70, p < 0.001), however, the slope of the best-fit linear regression was 0.70, suggesting that 
the measured Weber fractions were smaller than the computationally predicted ones, consistent with previous 
studies9,21.

Optimal multisensory integration precedes optimal time estimation. The psychophysical results 
qualitatively demonstrated that the audiovisual presentation decreased the central tendency bias along with the 
improvement in sensitivity. An important question here is how the timing sensitivity affects the central tendency 
bias in relation to multisensory integration. Theoretically, there are two possibilities regarding how these two 
stages of information integration –the multisensory integration and the central tendency– interact and realize an 
optimal timing behavior. In the first model, the central tendency precedes the multisensory integration (Fig. 6a). 
This model assumes that the integration of prior information causing the central tendency occurs within each 
sensory processing, and then the duration estimates from both modalities are integrated by the maximum like-
lihood estimation. The second model, in contrast, assumes that the duration estimates from both modalities are 
first integrated, and then the integration of prior information occurs for this multisensory duration representa-
tion (Fig. 6b). To clarify the relationship between the multisensory integration and the central tendency, we com-
pared the observed multisensory central tendency with the model predictions by these two models.

The first model assumes that the multisensory timing bias results from an optimal integration of unisensory 
biases. In the following models, we simulated all the distributions of duration representation by using a Gaussian 
distribution, according to previous studies16,25. The first stage of this model is the integration of prior information 
in each modality, which causes the central tendency in each sensory domain. We first estimated the posterior 
distributions in the unisensory timing from unisensory behavioral data. We assumed that both the prior and 
likelihood obey a Gaussian distribution with a mean and standard deviation (μP, σP) and (μL, σL). The prior distri-
bution centers on the mean stimulus duration D (μP = D), while the likelihood distribution for each stimulus 
duration centers on each physical stimulus duration. The width of the likelihood function was defined by the 
Weber fraction and the stimulus duration D:

σ = ×WF D (5)L

According to Bayes’ rule, the posterior distribution for a given stimulus duration obeys a Gaussian distribu-
tion with the following mean:

µ µ
σ

σ σ
= −

+
t

(6)R L
L

P L

2

2 2

where t represents the difference between the stimulus duration and the mean stimulus duration (t = µ − DL ). 
Since the magnitude of central tendency was measured by the linear regression of the reproduced duration to the 
stimulus duration, its regression slope can be calculated from equation (6):

Figure 5. Measured and modeled audiovisual Weber fractions. Symbols indicate the combination of auditory 
and visual noise levels: high visual and high auditory noise (purple), low visual and high auditory noise (blue), 
and high visual and low auditory noise (magenta). The solid line indicates the linear fit of the measured Weber 
fraction to the predicted one. The shaded region indicates the 95% confidence interval of the linear fit.
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The width of unisensory prior function was estimated by assigning the observed values of the central tendency 
and the Weber fraction to equation (7). The posterior distribution for each stimulus duration was calculated by 
multiplying the likelihood function and the prior distribution described above. Then, these auditory and visual 
posterior distributions were integrated by the maximum likelihood estimation: equations (1) and (2). The model 
prediction of audiovisual central tendency was obtained by regressing the peaks of simulated audiovisual distri-
butions for each stimulus duration to the stimulus durations. As shown in Fig. 6c, the predicted central tendency 
significantly overestimated the experimentally measured one (t (20) = 8.07, p < 0.001, Cohen’s d = 1.76).

The second model, in contrast, assumes that unbiased unisensory representations of duration are first inte-
grated, and this multisensory representation is biased by the prior integration. The first stage of this model is the 
multisensory integration of auditory and visual input. Here, the unisensory duration representation is not biased 
yet, thus the peak of the unisensory duration distribution is the same as the stimulus duration. The width of each 
unisensory distribution was defined by the measured Weber fractions multiplied by the stimulus duration. These 
unisensory distributions were integrated by the maximum likelihood estimation, and this integrated multisen-
sory distribution was used as a likelihood function in the prior integration. The peak of the multisensory prior 
function was defined as the mean stimulus duration D (μP = D); The width of the multisensory prior function was 
defined as the average of the estimated auditory and visual prior widths, that are the same as the unisensory prior 
widths estimated in the first model. Instead of integrating the unisensory prior distributions by the maximum 
likelihood estimation, we adopted this distribution tentatively because this model assumes the prior representa-
tion emerges in a processing after information from both modalities are already integrated, not in the integration 
process of multiple sensory information. We will further examine actual prior distributions for the unisensory 
and multisensory timings in the next section. As described above, we simulated the likelihood and prior functions 
for multisensory stimuli from unisensory ones. The model prediction of audiovisual central tendency was 
obtained by assigning these simulated distribution widths to equation (7). As shown in Fig. 6d, the predicted 
central tendencies matched more accurately with the measured ones (t (20) = 1.61, p = 0.12, Cohen’s d = 0.35). 
These results suggest that the multisensory integration precedes the integration of prior information.

Multisensory integration

Multisensory integration

Integration of prior information

Duration [sec]

Duration [sec]

Duration [sec]

Duration [sec]

(b) (d)

(a) (c)Integration of prior information
in each modality

Likelihood
Prior

Posterior
Visual

Auditory

Figure 6. Two models of the interaction between the central tendency and the multisensory integration. 
(a) The first model assumes that the unisensory information is first biased by the prior integration, and then 
the biased unisensory representations are integrated by the maximum likelihood estimation. (b) The second 
model assumes that the unbiased unisensory representations are first integrated by the maximum likelihood 
estimation, and then the prior integration biases this multisensory representation of duration. Capitals in the 
legends represent the type of distribution: Likelihood (L), prior (P), posterior (R), and distributions in the 
multisensory integration (D). These graphs show examples for a stimulus duration of 0.45 sec, thus all the 
likelihood functions center at 0.45 sec. (c) Measured and modeled audiovisual central tendencies from the first 
model. (d) Measured and modeled audiovisual central tendencies from the second model. Symbols in (c) and 
(d) indicate the combination of auditory and visual noise levels: high visual and high auditory noise (purple), 
low visual and high auditory noise (blue), and high visual and low auditory noise (magenta). The solid line 
indicates the linear fit of the measured central tendency to the predicted central tendency. The shaded region 
indicates the 95% confidence interval of the linear fit.
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Visual, auditory, and audiovisual timings utilize different prior information. The computational 
model revealed that the multisensory integration precedes the integration of prior information. Does such a 
Bayesian computation is implemented only in higher cognitive processing stages after the integration of multisen-
sory information? Indeed, some researchers have suggested that the hysteresis-based perceptual misjudgments 
like the central tendency depend on higher cognitive functions such as memory and decision making26, and 
a recent psychophysical work also demonstrated that the prior information could be acquired across sensory 
modalities22. In contrast, other psychophysical studies have demonstrated that such computational strategies 
are also implemented in the early sensory processing16,24. To address this question, we further modeled how the 
prior information had an impact on the time estimation for unisensory and multisensory stimuli. If the higher 
cognitive processing is responsible for all the unisensory and multisensory timings, the same prior representation 
should be involved in timing for all the unisensory and multisensory stimuli.

In comparison with using a true stimulus distribution (e.g., a uniform distribution within the range of stim-
ulus duration) as the prior, the Gaussian prior used in this paper has the advantage of being able to evaluate the 
internal representation of prior distribution by changing the width parameter. A wide prior width means the prior 
was close to a uniform distribution, that is, the prior information had only a little impact on timing behavior and 
the sensory likelihood determined timing behavior.

Instead of using the observed Weber fraction and central tendency values as described in the previous section, 
we simulated the magnitude of central tendency for different prior widths and Weber fractions from equation 
(7). Figure 7 shows how the central tendency covaries with the Weber fraction. There was a general tendency that 
the central tendency increased as the Weber fraction increased, as predicted from the Bayesian model. At the 
same time, this graph demonstrates that the prior width varied substantially across sensory modalities even if 
the timing sensitivities were similar. For example, while the Weber fractions for the visual stimuli with low noise, 
the auditory stimuli with low noise, and the audiovisual stimuli with high visual and high auditory noise were 
comparable (~0.17), the estimated prior widths for these three conditions were 177, 282, and 238 ms, respectively. 
The wider prior width in the auditory modality suggests that the auditory timing is more weighted on the sensory 
likelihood and less on the prior information than the visual timing.

Discussion
In the present study, we found that the sensory uncertainty impairs the timing sensitivity and amplifies the cen-
tral tendency. These results are consistent with a Bayesian prediction: the noisier the sensory representation, the 
larger the central tendency. Cicchini et al.16 demonstrated this relationship by showing that an individual with 
high timing sensitivity is less susceptible to the central tendency. The present study, on the other hand, clarified 
that this statement also holds true within-individually. Importantly, our results demonstrated such prior infor-
mation is also utilized in the auditory domain, not only in the visual domain. A couple of studies reported that the 
auditory modality shows no or only a very weak central tendency compared to the visual modality16,24, implying 
that the auditory timing utilizes only the sensory likelihood, and rarely the prior information. The present study 
challenged this view by demonstrating that the auditory timing is also affected by the prior information when 
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the sensory signal is ambiguous. Previous studies have used clear and unambiguous sound stimuli like the “no 
noise” condition in our study, which would lead to the failure of finding a robust central tendency in the auditory 
domain.

We further demonstrated that the multisensory integration improves both the timing sensitivity and the cen-
tral tendency. With regard to the timing sensitivity, previous studies have shown apparently contradictory results. 
The optimal integration of multiple sensory signals predicts an improvement in timing sensitivity. However, this 
prediction has not been confirmed experimentally in some studies21,27. Hartcher-O’Brien et al. (2014) argued that 
the studies which reported a sub-optimal integration used “empty intervals” that are defined by two brief stimuli 
and have no sensory input during the duration to be timed, and suggested that the multisensory information 
is optimally integrated only when durations are defined by “filled intervals” that the sensory signal is present 
throughout the duration9. In the present study, noise stimuli were always presented between two brief target stim-
uli defining a duration, thus our stimuli could be regarded as filled intervals, which might facilitate the optimal 
multisensory integration. Another possible reason why some studies failed to observe the optimal multisensory 
integration could be the difference in timing sensitivity between modalities. The optimal integration is more 
effective when the timing sensitivities from multiple signals are comparable. Otherwise, the integrated estimate 
should rely heavily on the most reliable unisensory signal, and the advantage of integration diminishes. In the 
studies that reported the sub-optimal multisensory integration, one of the signal sources was much more sensitive 
than the other signals, thus the effect size of the improvement would be too small to reach statistical significance.

Consistent with previous studies, we did not find a significant difference in timing sensitivity for empty inter-
vals between modalities24,28. Nevertheless, the central tendency varied greatly for auditory and visual stimuli. 
These results suggest that the difference in the central tendency between modalities cannot be explained by the 
difference in the sensory uncertainty, but by how each sensory modality exploits the prior information. Indeed, 
the computational model suggested that the visual, auditory and audiovisual durations are estimated based on 
different prior information.

A recent psychophysical study demonstrated that one can acquire a single prior representation if the visual 
and auditory stimuli are alternately presented within a session, and suggested that the prior information could be 
generalized across sensory modalities22. In contrast, the present study demonstrated that the prior representation 
could be different across modalities if the visual and auditory stimuli are presented in different sessions, and that 
the central tendency for multisensory stimuli results from the optimal integration of unisensory biases. Our 
results suggest that our timing system does not necessarily use a general modality-independent prior representa-
tion irrespective of sensory input. Rather, purposive prior could be selected adaptively in conformity with the 
incoming sensory signals. Such an adaptive selection of prior may be efficient for updating the environmental 
information. If an environment contains multiple sources of signal, the prior representation should be general-
ized across various sensory inputs; if the signal source is rather limited and constant, a prior specific for the input 
would be more efficient.

Since the reproduction task requires motor responses, one might argue that the timing sensitivity in the repro-
duction task could be independent from the purely perceptual sensitivity measured in the discrimination task. 
However, past studies have demonstrated that perceptual and sensorimotor timing sensitivities are significantly 
correlated29,30. Furthermore, the fact that the audiovisual central tendency measured in the motor task can be 
successfully modeled by using the timing sensitivities measured in the perceptual task obviously suggests that the 
perceptual and sensorimotor timing share a common mechanism.

However, this does not necessarily mean that the perceptual and sensorimotor timing share the completely 
same timing system. Certainly, both the multisensory timing sensitivity and bias can be modeled with weights 
determined by unisensory sensitivities, but the model underestimated the improvements in the Weber fraction, 
consistent with a previous study9. One possible reason is that the timing sensitivity in the discrimination task 
could be overestimated by the decision uncertainty related to the binary decision process. Since the measured 
Weber fractions are not determined only by purely sensory processes, but also by post-perceptual processes, 
the sensory likelihood distribution could have a narrower tuning than that estimated from the obtained Weber 
fraction. Integrating visual and auditory Weber fractions may include decision-related noise distributions from 
two modalities redundantly, which would lead to the overestimation of the modeled multisensory sensitivity. It 
also should be noted that the sensorimotor timing might be able to exploit the timing noise inherent in the motor 
system. A recent psychophysical study reported that subjects reproduce auditory durations more precisely than 
visual durations31, in contrast to the fact that the perceptual discriminability was comparable between auditory 
and visual modalities. Although the present and previous studies have used the perceptual Weber fraction to 
estimate the likelihood function, further study will need to address how perceptual and motor noise contribute 
to the likelihood estimation.

In addition to the width of likelihood distribution defined by the Weber fraction, one should also be cautious 
about the peak of likelihood and prior distributions since the internal representation of stimulus duration could 
be biased overall compared to the physical stimulus duration. Past Bayesian modeling studies have assumed that 
both the likelihood and the prior are unbiased16,25, that is, centered on the physical stimulus duration and the 
physical mean of stimulus durations, respectively. However, these assumptions cannot account for the overall 
reproduction bias. Although previous studies have suggested that subjects can utilize the veridical (unbiased) 
stimulus distribution as the prior17, and the overall bias is an idiosyncratic bias independent from the central 
tendency16, no studies have directly investigated how such overall biases occur in relation to the Bayesian time 
estimation. Any stage of duration processing could be susceptible to such biases, including sensory encoding 
(likelihood), integration of previous information (prior), processes independent from these Bayesian estimations, 
which could potentially affect the model predictions.

Another outstanding question related to the sensorimotor timing is whether such a Bayesian computation 
is implemented in the sensory encoding stage or the decoding (motor production) stage. The present study 
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demonstrated that the prior representation emerges adaptively depending on incoming sensory input, suggesting 
the presence of Bayesian mechanisms embedded in the sensory encoding processes. Consistent with this view, a 
recent fMRI study suggested that the brain activities associated with the central tendency occur during the stim-
ulus encoding phase32, and psychophysical studies have reported similar Bayesian phenomena of time perception 
in perceptual tasks such as the duration bisection task33 and the duration discrimination task34. In contrast, sev-
eral studies have suggested that a Bayesian time estimation is also associated with higher cognitive processes such 
as memory and decision-making33–35. Furthermore, various studies have shown that the motor learning in the 
spatial domain occurs in a Bayesian manner36,37, and it would be plausible that the motor system applies a similar 
Bayesian strategy also in the temporal domain. Since both perceptual and motor systems have inherent noise, it 
might be efficient to utilize both noise information to estimate time as accurately and precisely as possible.

Although the present study focused on the sensorimotor timing, the central tendency has been reported 
widely across various sensory and motor features including stimulus length38, stimulus size, numerosity39, and 
movement distance40. Furthermore, there is growing evidence that low-level sensory features such as orientation 
or motion direction are also attracted toward previously presented stimuli41,42. These lines of studies strongly 
support the view that similar statistical mechanisms are implemented at multiple sensory and motor processing 
stages. The present study suggests that the brain exploits the prior information stored at different processing 
stages adaptively in accordance with incoming sensory evidences.

Methods
Subjects. Seven healthy volunteers (4 males, 19–28 years old) participated in the experiment. All subjects 
reported to have normal hearing and normal or corrected-to-normal vision. This study was carried out in accord-
ance with the recommendations of the ethics boards of the University of Tokyo with written informed consent 
from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The 
protocol was approved by the institutional review board of the University of Tokyo.

Apparatus and stimuli. The auditory stimuli were presented through an Audio Stream Input/Output 
(ASIO) compliant USB audio interface (Roland UA-1G) and SONY MDR-XB500 headphones at 60 dB. The visual 
stimuli were presented on a CRT monitor (Mitsubishi Electric RDF223H, 1024 × 768 pixels, 120 Hz refresh rate). 
Subjects were seated 57.3 cm from the monitor in a dark soundproof room and the subjects’ heads were stabilized 
using a chin rest.

Stimuli were generated using MATLAB (MathWorks, R2014b) and the Psychophysics Toolbox43,44. We pre-
sented Gabor stimuli (0.5 cpd; SD of contrast envelope 1.6 deg; peak contrast 40%) as the visual target stimuli, 
and simple tones (600 Hz, 60 dB) as the auditory target stimuli. Each visual or auditory stimulus lasted for 20 ms. 
A cosine ramp of 5 ms was applied to the onset and offset of auditory targets. As noise stimuli, we presented 
dynamic random noise stimuli (8 × 8 deg) for visual noise, and white noise sound for auditory noise. The noise 
intensity (luminance contrast for visual noise; sound level for auditory noise) was calibrated for each partici-
pant by a preliminary experiment (see below). Sound levels were calibrated with a WS1361 sound-level meter 
(Wensn), and the synchronization between auditory and visual stimuli was verified using a Tektronix TBS 1042 
oscilloscope with a photodiode and a microphone.

Procedure. The experiment consisted of two tasks: the duration discrimination task, and the duration repro-
duction task. The order of the discrimination task and the reproduction task was randomized across subjects.

Pre-experimental calibration of noise intensity. To equalize the signal-to-noise ratio between the visual and audi-
tory stimuli, we first measured the visual and auditory detection thresholds. In the experiment, the target was 
embedded in the stream of noise stimulus (dynamic random noise for vision; white noise sound for audition). 
Target stimuli appeared in half of all trials, and subjects answered whether the target was present or absent. The 
noise intensity (luminance contrast for vision; noise loudness for audition) was systematically manipulated and 
the correct response rate was calculated for each noise intensity. Psychometric functions were fitted to the data 
and we defined the detection threshold individually as the noise intensity at which the subject judged target pres-
ence correctly with a probability of 75%.

Duration discrimination task. The timing sensitivities for visual, auditory, and audiovisual stimuli were meas-
ured by the duration discrimination task. In this experiment, three successive flashes or tones that marked two 
neighboring durations were presented, and subjects reported whether the first duration was longer or shorter 
than the second (Fig. 1a). The standard duration was 640 ms; the comparison durations ranged from 450 ms to 
900 ms, and were spaced logarithmically. The presentation order of the standard and comparison durations was 
counter-balanced. All comparison durations were presented 24 times.

The flashes or tones were embedded in noise stimuli. The noise presentation started 500–900 ms before the 
first flash/tone and ended 500–900 ms after the third flash/tone. The noise intensity was 0.66, 0.22 or 0 times the 
threshold noise level obtained in the detection threshold experiment (Fig. 1c). This manipulation aimed to equal-
ize the signal-to-noise ratio between the visual and auditory stimuli. Hereinafter, we call these three noise levels 
as high, low, and no noise conditions.

All subjects completed three experimental blocks: visual, auditory, and audiovisual experiments. These three 
experiments were conducted in different experimental days, and the order of the experiments was randomized 
across subjects. In the audiovisual experiment, the visual and auditory stimuli were presented synchronously, and 
there were three combinations of visual and auditory noise levels: high visual and high auditory noise; high visual 
and low auditory noise; low visual and high auditory noise. These three combinations mean the equivalently 
noisy, the vision-noisier, and the audition-noisier conditions, respectively.
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In the analyses, the probability at which the subject judged the comparison to be longer than the standard was 
plotted as a function of the comparison duration. A cumulative normal function was fitted to the data and we 
calculated the Weber fraction to quantify timing sensitivity (Fig. 2). Weber fractions were defined as the ratio of 
the standard deviation of the best-fit psychometric function to the standard duration (σ/640 ms).

Duration reproduction task. The magnitude of central tendency was measured separately for visual, auditory, 
and audiovisual stimuli by the duration reproduction task. In the experiment, a pair of stimuli was briefly pre-
sented, one after the other. Subjects were asked to reproduce the duration between the pair of stimuli by pressing 
a button. Immediately after the subject’s response, a sensory feedback (a flash or a tone) was given in every trial 
(Fig. 1b). The stimulus durations ranged from 450 ms to 900 ms, and were spaced logarithmically. Each duration 
was presented 60 times.

All subjects completed the visual, auditory and audiovisual experiments. The noise intensities in the experi-
ments were the same as in the duration discrimination task. The order of the three experiments was randomized 
across subjects. At the beginning of each experiment, subjects completed a practice session with 50 trials in order 
to become accustomed to the task.

To prevent the influence of outlier trials, the data were excluded if the reproduced duration deviated more 
than 3 standard deviations from each condition’s mean. We quantified the central tendency by linearly regressing 
the reproduced duration to the stimulus duration. The slopes of the linear regressions were compared across con-
ditions as indices of the central tendency.

Data Accessibility
Data will be made available through Open Science Framework.
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