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Abstract
Radiologists and pathologists frequently make highly conse-

quential perceptual decisions. For example, visually searching
for a tumor and recognizing whether it is malignant can have a
life-changing impact on a patient. Unfortunately, all human per-
ceivers—even radiologists—have perceptual biases. Because hu-
man perceivers (medical doctors) will, for the foreseeable future,
be the final judges of whether a tumor is malignant, understand-
ing and mitigating human perceptual biases is important. While
there has been research on perceptual biases in medical image
perception tasks, the stimuli used for these studies were highly ar-
tificial and often critiqued. Realistic stimuli have not been used
because it has not been possible to generate or control them for
psychophysical experiments. Here, we propose to use Generative
Adversarial Networks (GAN) to create vivid and realistic medical
image stimuli that can be used in psychophysical and computer
vision studies of medical image perception. Our model can gener-
ate tumor-like stimuli with specified shapes and realistic textures
in a controlled manner. Various experiments showed the authen-
ticity of our GAN-generated stimuli and the controllability of our
model.

Introduction
Because of its significant impact on health and well-being,

medical image perception has been the focus of a great deal of
research [1, 2, 3], from studies on its limits to studies on how
to improve it. However, researchers often encounter a relative
paucity of data and resources needed to pursue further investiga-
tion. While there are many publicly available medical imaging
datasets, these are often limited, inadequately annotated, or out-
dated, e.g., The Digital Database for Screening Mammography
(DDSM[19]). Moreover, the public datasets (e.g.,[5]) are not suf-
ficiently large to support certain research questions.

Therefore, many researchers resort to using their own data
from hospitals. Although this approach can ensure sufficient data
is collected, it is often extracted from small geographic areas that
are not representative of the broader population. Another issue
with this method is the tedious and time-consuming process it re-
quires to sort, categorize, and de-identify the data, and make it
public. Moreover, it requires experts to perform meticulous an-
notations that are costly and time intensive [4]. Finally, and most
importantly for the present purposes, these types of medical im-
ages are specific to each individual patient, which allows almost
no room for researchers to manipulate them in order to meet de-
sired experimental configurations.

To tackle this problem in psychophysical experiments, arti-
ficial medical stimuli have been employed [6, 7]. On one hand,
artificial stimuli can be easily generated and manipulated, such
as shape morphing and background replacement. On the other
hand, those stimuli are obviously fake and completely unlike

those that doctors routinely examine. Consequently, expert ra-
diologists rightly worry that these psychophysical experiments do
not accurately represent their daily diagnostic tasks.

Thus, generating authentic and easily controllable medical
image stimuli is critical for medical image perception studies.
Current research in computer vision provides us with a promising
approach, using Generative Adversarial Networks (GAN). Gen-
erative Adversarial Networks have been utilized for generating
authentic materials [14, 13, 8] for years, such as faces, cars, land-
scapes, and so on. Trained on real image datasets, GAN can gen-
erate various authentic samples that have similar semantic con-
text to that of real images. Besides this, the generation is easily
conditioned [8], which means manipulating generated samples is
possible through the design and the input of the GAN.

Inspired by Generative Adversarial Networks, we utilized
this computational model to generate medical image stimuli. We
then tested our model on mammogram stimuli generation. Fur-
thermore, we generated tumor-like stimuli with specified shapes
and realistic textures using our GAN model, which effectively
controls the similarity of the generated stimuli. Various experi-
ments showed the authenticity of our GAN-generated stimuli and
the controllability of our model.

Generative Adversarial Network
A Generative Adversarial Network (GAN) is a powerful

deep learning model with two networks, i.e., a generator network
and a discriminator network [9]. The two networks learn from
each other in an adversarial way. In summary, the generator pro-
duces authentic images from random noise vectors and tries to
fool the discriminator, while the discriminator tries to distinguish
the fake samples (generated from generator) from the real sam-
ples. The whole process can be conceptually described as a min-
max game shown in Equation 1, where G represents the genera-
tor, D represents the discriminator, pdata(x) indicates the real data
distribution, and pz(z) indicates the noise vector distribution.

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (1)

Ideally, through the adversarial training, GAN can approx-
imate the real data distribution (manifold) parameterized by the
generator network. Similar samples between two specific samples
can be picked along the path between the corresponding points on
the manifold. This can be done by interpolating the corresponding
latent vectors and forwarding them through the generator.

Originally, the training of the Generative Adversarial Net-
work (GAN) was highly unstable and many strategies have been
proposed to tackle this problem [10, 11, 12, 13]. In this paper, we
adopt the structure from StyleGAN [14], where the latent space
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Figure 1. Comparison of (a) real mammograms, (b)stimuli used in previous studies [6], and (c)our GAN generated mammograms. A particular example

from previous study consists of naive morphed shapes (tumors) and healthy mammogram backgrounds, which are obviously fake and do not represent realistic

stimuli for radiologists. It is clear that our mammogram generation can mimic the texture for both tumor and non-tumor regions and they have reasonable shapes

compared to real mammograms.

Z is first mapped into the W space through a non-linear map-
ping network (an 8-layer MLP) and then merged into the synthe-
sis network via adaptive instance normalization (AdaIN) at each
convolutional layer [15, 16, 17]. Gaussian noise is added after
each convolutional layer, before the AdaIN layer.

StyleGAN has the ability to generate high-resolution real-
istic images of faces, cats, bedrooms, and cars. It can control
the image details from coarse to fine by changing the AdaIN pa-
rameters and the input noises at different network levels. Using
StyleGAN, we can easily generate various authentic medical im-
ages by changing the input noise vectors. However, the genera-
tion is unconditional; this means, in order to get the desire input
(e.g., the mammogram having a specific shape or texture.), we
need to pick samples from a large number of generated images
because we have no control over the attributes of the images (e.g.,
the shape and the texture of the mammogram). It is tedious and
time-consuming. Moreover, we do not have the latent codes for
real data if we want to generate similar medical images between
two real ones. An intuitive idea is that we can encode the latent
vector z from the desired medical image. Then the similar med-
ical images can be generated by interpolating the corresponding
encoded vectors.

Method
To train then utilize the encoder, first, the discriminator and

generator of StyleGAN [14] are pretrained. Then the generator
of styleGAN is fixed. While training the encoder network, tradi-
tional methods [20, 21] regularize the encoder on the latent space,
encouraging the encoder to encode the same latent codes for the
corresponding generated images regardless of the reconstructed
images. This method can deteriorate the reconstruction quality.
Instead, we adopt the idea from In-domain GAN inversion [18],
where the regularization of the encoder is on the image space.
In detail, the encoded vector is fed into the generator again and
the L2 reconstruction loss regularizes the encoder on the image
space. The training is conducted on the real data and the adversar-
ial loss helps the reconstructed image to be more realistic. More-

Figure 2. Overview of proposed method. The generator (G) and discrim-

inator (D) are from StyleGAN[14]. The training has two phases. In the first

phase, the generator and discriminator will be trained first without the en-

coder (E) via adversarial loss Ladversarial . In the second phase, the generator

(G) will be fixed. The encoder (E) and discriminator (D) will be trained adver-

sarially via the reconstruction loss Lreconstruction, the perceptual loss Lperceptual ,

and the adversarial loss Ladversarial . The dashed lines indicate how to compute

the corresponding loss metrics.

over, perceptual loss [22] is utilized. The whole process can be
summarized as follows

min
E
||x−G(E(x))||2 +λ1||F(x)−F(G(E(x)))||2

−λ2Ex∼pdata(x)[logD(G(E(x)))]
(2)

min
D

Ex∼pdata(x)[logD(G(E(x)))]−Ex∼pdata(x)[logD(x)]

+
γ

2
Ex∼pdata(x)[||∇xD(x)||22]

(3)

where pdata(x) indicates the real data distribution, x is the
real image, E represents the encoder, F indicates the VGG feature
extraction [23], and λ1, λ2 and γ are weights for the perceptual
loss, the adversarial loss, and the gradient penalty. An overview
of the training process can be find in Figure 2.

Since inverse mapping will never be perfect, additional op-
timization is required for a better reconstruction for each image.
Starting with the output code from the encoder, the optimization
updates the encoded vectors based on the reconstruction loss and



the perceptual loss but is still regularized by the encoder. The
optimization process can be described as below.

zinv = min
z
||x−G(E(x))||2 +λ3||F(x)−F(G(z))||2

+λ4||z−E(G(z))||2
(4)

where zinv is the optimized inverse code, λ3 and λ4 are
weights for the perceptual loss, and the code reconstruction loss
(i.e., the encoder regularization).

We test our proposed method on the mammogram genera-
tion task. Similar experiments can be conducted with different
medical imaging modalities.

Perceptual loss
Perceptual loss has been utilized as a similarity metric in

many computer vision tasks, such as style transfer [24, 25], and
image super-resolution [22], both of which are ill-posed prob-
lems. For style transfer, there is no ground truth to act as a ref-
erence. For image super-resolution, many high-resolution images
can be sampled to generate the same low-resolution image. In or-
der to achieve the tasks, semantic information of the input images
should be maintained. Thus, per-pixel loss is no longer suitable
since it cannot capture the semantic difference between the output
and ground truth. For example, in style transfer, there are usually
drastic changes in color and texture compared to the input images.

Perceptual loss is computed as the difference between high-
level features from a pretrained loss network which is usually a
feature extractor of an image classification network. Compared to
the per-pixel loss, which depends only on low-level pixel infor-
mation, perceptual loss is more robust in image similarity mea-
surement during training.

Implementation details
We conduct our experiment on Digital Database for Screen-

ing Mammography (DDSM) [19] dataset which consists of 2,620
cases of normal, benign, and malignant cases. During training,
we only use the mammograms which have tumors inside, i.e., the
benign and malignant cases. The GAN part is pretrained based
on StyleGAN. The encoder consists of one initial convolution, 8
residual blocks, and one dense layer. And the batch normaliza-
tion is utilized for all modules in the encoder. While training the
encoder, the generator is fixed. Only the encoder and discrimina-
tor are updated according to the loss function shown in Equation
2 and Equation 3 respectively. For the perceptual loss, we use
conv4 3 feature layer in VGG [23] as illustrated in [18]. Hyper-
parameters are set as λ1 = 5e−5, λ2 = 0.1, λ3 = 5e−5, λ4 = 2, and
γ = 10. And we use the Adam optimizer [27] with β1 = 0.9 and
β2 = 0.99. The learning rate is set to 0.0001

Mammogram generation
The pretrained StyleGAN[14] approximates the real mam-

mogram distribution (manifold) which is parameterized by the
generator. Then, the authentic mammograms can be sampled
from the learned manifold. To do so, we sample latent codes from
a normal distribution and use the generator to map the latent codes
onto the learned manifold.

Mammogram interpolation
Mammogram interpolation is utilized to generate similar

stimuli between two desired mammograms. Since the GAN gen-

erator already approximates the real data manifold, similar mam-
mograms can be found between any two mammograms on the
path that links them on the manifold. Given two latent codes
from either unconditional generation or encoded from real mam-
mograms, we interpolate the latent codes and the generator can
help to find one of the linking paths by mapping the interpolated
latent codes onto the manifold.

Controllable mammogram generation
Controllable mammogram generation is utilized to generate

similar desired mammograms (i.e. the end points for interpola-
tion). With the generator and the encoder network, we can achieve
the controllable mammogram generation, where we can combine
the desired tumor texture with the given shape template.

First, we crop the tumor texture region and paste it onto the
shape template. Then, we use the encoder to obtain a latent code
for this combined raw image. Because the regularization of the
encoder is on the image space, the latent code can already carry
certain semantic information from both the shape template mam-
mogram and the tumor texture mammogram. Finally, we apply
the masked optimization, only using the tumor texture region to
compute the reconstruction loss.

Human evaluation
To verify the authenticity of our GAN generated mammo-

grams, we designed a judgement test where participants were ran-
domly presented 100 mammograms with the same amount of real
and generated (fake) samples. In this task, they were asked to
classify each mammogram as real or fake as well as rate their
level of confidence with their selection. In total, 6 participants
were involved.

To make sure participants were paying attention and not
guessing randomly, we asked a subset of participants to do the
judgment test a second time. Participants were not told about the
second judgment task prior to the first judgment, eliminating any
chance that they purposely remember their first responses. At last,
we compute the test-retest similarity in term of the Sokal-Michene
metric[26].

Results
In this section, we will show the mammogram stimuli gener-

ation quality, the corresponding human evaluation result, the in-
terpolation result, and the results when generating mammograms
given specific shapes and textures.

Mammogram generation
Examples of the GAN generated samples are shown in Fig-

ure 1 (c). A particular example from previous study [6] consists
of naive morphed shapes (tumors) and healthy mammogram back-
grounds, which are obviously fake and do not represent realistic
stimuli for radiologists. It is clear that our mammogram genera-
tion can mimic the texture for both tumor and non-tumor regions
and has reasonable shapes compared to real mammograms.

Mammogram interpolation
The interpolation results are shown in Figure 3. Through the

interpolation, the mammograms change gradually from one to the
other and they are similar to the neighboring images. Moreover,
through the interpolation, we can generate a similar stimuli loop
where the stimuli gradually changing from image A to image B,
then to image C, and finally back to image A, as shown in Figure
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Figure 3. Mammogram interpolation result. Here we evenly pick three

mammograms along the interpolation just for illustration. We show that we

can generate a similar stimuli loop where the mammogram can gradually

change into other mammograms, and finally change back.

Controllable mammogram generation
The final results compared with the tumor texture mammo-

gram, shape template mammograms, directly stitching results,
traditional image blending results, and the results without final
optimization (i.e., directly generated from the encoder output),
are shown shown in Figure 4. For the traditional image blending
results, though it blends the tumor texture region into the shape
template mammogram, the surrounding region of the tumor is not
realistic compared to our GAN generated results. The results di-
rectly generated from the encoder outputs do not have the same
tumor texture as given. It is clear that only results obtained after
optimization have the same tumor texture and shape as given.

Tumor Texture

Shape Template Directly Stitching Image Blending W/O Optimization W/ Optimization

Figure 4. Controllable mammogram generation results. We compared

our final results with the traditional image blending method and the results

without final optimization (i.e., directly generated from the encoder output).

It is clear that only the results after final optimization have the same tumor

texture and shapes as given.

Human evaluation
The performance of the judgement test participants in terms

of the Receiver Operating Characteristic (ROC) curve is shown
in Figure 5. The Receiver Operating Characteristic (ROC) curve
is a plot which can indicate the ability of a binary classifier as its
discrimination threshold is changing. A ROC curve that is close to
the diagonal indicates performance at chance level. A ROC curve
that is close to upper left corner indicates stronger discrimination
power. For all the participants, their performance curves are near

the diagonal, which is near chance discrimination performance,
and the d’ is 0.02 on average, which indicates that the generated
mammograms appeared authentic.
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Figure 5. Human judgement test for our mammogram generation quality.

All the Receiver Operating Characteristic (ROC) curves lie near the diagonal,

indicating that our generated mammogram successfully fooled participants.

The high test-retest similarities indicate that participants did not just randomly

guess the result.

The test-retest similarity in term of the Sokal-Michene
metric[26] is shown after each participant initial in Figure 5. The
high similarities indicate that participants did not just randomly
guess the mammogram label.

Discussion
While other methods [28] can only achieve unconditional

mammogram generation, our method provides control over the
shape and texture of the generated mammograms. Since the stim-
uli used in psychophysical experiments of medical image percep-
tion often need to be similar and controllable, we can manually
combine the desired tumor texture with the similar shape tem-
plates to create the required stimuli. Therefore, this work largely
benefits psychophysical experiments by establishing the ability to
manipulate and control life-like medical images.

Summary
We proposed to use the Generative Adversarial Network to

generate medical image stimuli for studies of medical image per-
ception. Similar medical image stimuli can be generated through
the interpolation of the corresponding latent codes. Desired stim-
uli can be manually combined with desired attributes, e.g. object
shape and tumor texture, in a controllable manner. We tested our
method on the mammogram stimuli generation task. Empirically,
we proved the authenticity of our synthesized mammograms with
a psychophysical discrimination task.
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