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Abstract: Serial Dependence is a ubiquitous visual phenomenon in which sequentially viewed
images appear more similar than they actually are, thus facilitating an efficient and stable perceptual
experience in human observers. Although serial dependence is adaptive and beneficial in the
naturally autocorrelated visual world, a smoothing perceptual experience, it might turn maladaptive
in artificial circumstances, such as medical image perception tasks, where visual stimuli are randomly
sequenced. Here, we analyzed 758,139 skin cancer diagnostic records from an online app, and we
quantified the semantic similarity between sequential dermatology images using a computer vision
model as well as human raters. We then tested whether serial dependence in perception occurs in
dermatological judgments as a function of image similarity. We found significant serial dependence
in perceptual discrimination judgments of lesion malignancy. Moreover, the serial dependence was
tuned to the similarity in the images, and it decayed over time. The results indicate that relatively
realistic store-and-forward dermatology judgments may be biased by serial dependence. These
findings help in understanding one potential source of systematic bias and errors in medical image
perception tasks and hint at useful approaches that could alleviate the errors due to serial dependence.

Keywords: serial dependence; semantic similarity; computer vision; medical image perception; skin
cancer diagnostic; systematic error

1. Introduction

The natural visual world is autocorrelated: objects do not spontaneously pop into
or out of existence in the typical visual experience, and what was present a moment ago
tends to still be present at this moment. The human visual system has developed adaptive
mechanisms that take advantage of these natural autocorrelations by introducing serial
dependence in perceptual interpretations. Due to this mechanism, objects recognized at
one moment appear more like similar objects seen in the last several seconds. The result of
this serial dependence is that perceptual experience seems smoother and more stable than
it should be. This is beneficial because without it, the visual world would look jittery and
unstable; object identities would appear to fluctuate due to changes in lighting, viewpoint,
blinks, and myriad sources of internal and external noise [1,2].

It is intuitive that human vision benefits from recycling visual history, smoothing
and stabilizing perceptual experience in the natural world. However, the benefit of serial
dependence has limits because the visual world is not always natural. In certain artificial,
human-designed visual tasks, such as medical image perception or randomized laboratory
experiments, visual stimuli are no longer naturally autocorrelated. Visual images in these
situations can vary randomly from one moment to the next. If the visual system imposes
serial dependence, smoothing or reusing previous visual history, this could introduce
systematic errors by attracting current perception towards previous visual history.
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Studies have shown that this is exactly what happens. Serial dependence systemati-
cally biases current perception toward visual history in many tasks, such as perception of
orientation [1], attractiveness [3,4], and emotional expression [5]. Serial dependence also in-
troduces systematic perceptual errors in medical image perception tasks [6]. However, these
studies were conducted under lab conditions with highly artificial stimuli and experimental
designs that are not typical in clinical practice [6]. More recently, progress in Generative
Adversarial Networks (GANs) affords the opportunity to generate more realistic simulated
medical images as stimuli [7,8]. However, even in these studies, the relatively complex
psychophysical tasks were not comparable to realistic, clinically relevant scenarios.

In this study, we address several of the shortcomings in prior work and we test
whether serial dependence occurs in a teledermatology setting, one of the most important
and commonly employed subsets of telemedicine [9,10]. Remote store-and-forward tele-
dermatology, which involves sequential judgments of static images, is an especially fast
growing area of telemedicine [11–14], and it requires the involvement of clinicians because
automated systems are not sufficient to make accurate diagnostic classifications [15–17].
The question in the present study is whether sequential judgments of dermatological lesions
in a remote store-and-forward setting result in serial dependence.

We analyzed 758,139 skin cancer diagnostic judgments from 1137 participants collected
from an app developed by Centaur Labs, a US medical Artificial Intelligence (AI) company
based in Boston. The task was a straightforward 2AFC (two-alternative forced choice)
(yes/no) discrimination, with a goal of diagnosing whether an actual skin cancer image
was nevus (benign) or melanoma (malignant). This is comparable to a realistic, remote
store-and-forward teledermatology task, with a more natural two-alternative forced choice
(yes/no) design.

We found that there was statistically significant serial dependence in discrimination
judgments that was tuned to the sequential similarity in the malignancy of the lesions. The
consequence of the serial dependence was a statistically significant reduction in metrics
of sensitivity and specificity, including reduced d-prime (d′) and increased error rates.
Additionally, using a recent Learned Perceptual Image Patch Similarity (LPIPS) computer
vision model, we quantified serial dependence as a function of the semantic similarity
between sequential images and found that serial dependence varied as a function of the
patchwise similarity between sequential images.

Together, our results suggest that serial dependence in perceptual decisions may
impact realistic dermatological judgments, at least under certain circumstances akin to
those in remote store-and-forward teledermatology [18,19].

2. Materials and Methods
2.1. Experiment Stimuli

All skin cancer images utilized in the trials on the app were subsampled from ISIC
2019 Challenge Datasets [20–22]. This set of images contains two types of lesion, i.e., nevus
and melanoma, indicating benign and malignant cases. The images were dermoscopy
images after manual correction of color hue, luminance, and alignment and were taken by
different devices using polarized and non-polarized dermatoscopy. Samples of skin cancer
image stimuli are shown in Figure 1. In summary, for all the skin cancer images that were
shown, 57.3% were benign and 42.7% were malignant.
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Figure 1. Samples of skin cancer image stimuli. A total of 7798 images were drawn from the ISIC
2019 Challenge Datasets [20–22], which contain various nevus and melanoma lesions. In each trial,
a single random sample image was selected and presented to the participant. Observers judged
whether the image was nevus (benign) or malignant (yes/no forced choice design). Feedback was
provided after each trial.

2.2. Participants

The users of the app are predominantly medical students, with some medical residents.
Individual participant information such as age, sex, and demographics that are typically
gathered in scientific experiments are not known for this group of observers because this
information is saved in the user profile of the app and was not available to us. However, it
is known that all users had normal or corrected-to-normal vision. Since the use of the app
does not work outside of the United States, users must be located in the U.S. at the time
of app usage. Before using the app, users gave consent to have Centaur Labs use the data
they provide through app usage. Users received earnings from a predefined money pool
(around US$ 50) for each task they participated in.

2.3. Experiment Design

For the dermatological classification task that was investigated in this study, users first
completed a training session of 10 trials with 10 separate stimuli. This training explained
the procedure of the task and prepared users for the actual classification task, which was
identical to the training.

In each trial, a random skin cancer image was selected and presented to the participant.
Below the image, they were prompted to choose one of the two possible responses, “benign”
or “malignant”. Feedback was provided after every trial to inform users if their response
was correct or incorrect. Afterward, users voluntarily moved on to the next trial at their
own pace. Users were told they could end the task at any time.

We were provided with 758,139 data points across 13 variables, which were collected
between 4 September 2020 and 21 June 2021. Each data point corresponded to one de-
cision of a user, classifying a dermatological image as either benign or malignant. After
pre-processing, 756,001 data points from 1137 users were used for further analyses (pre-
processing steps and exclusion criteria are illustrated in Appendix A).

2.4. Serial Dependence

Serial Dependence has three main kinds of tuning. First, feature tuning: serial depen-
dence occurs most strongly between relatively similar features and not between identical
ones or highly dissimilar ones [1,23]. For example, when two identical images are seen in
succession, serial dependence does not bias judgments in any direction because the images
are identical; likewise, if the two successive images are extremely different from each
other (e.g., apples and oranges), then serial dependence does not bias judgments either.
Only when two successive images are moderately similar is there a serial dependence
in perceptual judgments. Serial dependence is also temporally tuned: the magnitude of
serial dependence gradually decays over time or with intervening visual information [1,24].
Third, spatial tuning: serial dependence occurs only within a limited spatial region, and it
is strongest when previous and current objects are presented at the same location [1,25]. In
general, we can utilize feature and temporal tuning as the most important metrics to probe
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the serial dependence effect and to rule out other artifacts, such as simply repeating the
same response or lapsing.

To measure the presence of feature tuning, we measured serial dependence as a func-
tion of the similarity in sequential stimuli. In this study, we adopt two metrics of similarity.
One is malignancy similarity, where malignancy is estimated based on a popularity vote.
The “similarity” in this respect is an abstracted concept based on behavioral judgments
of independent observers. What counts as similar is not necessarily in the image or pixel
domain but in the degree of malignancy (Figure 2). The second form of “similarity” that
we quantified is semantic similarity, using a popular Learned Perceptual Image Patch
Similarity (LPIPS) metric [26] approach borrowed from computer vision.
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Figure 2. Overview of all 7798 (6688 benign, 1110 malignant) unique images used, sorted by the
consensus malignancy rating value (−100: classified as benign by all users, 100: classified as malignant
by all users). The five sample images below the abscissa show a sequence of example images that
had varying degrees of agreement, from benign to malignant.

2.5. Malignancy Similarity

The malignancy of each stimulus was estimated based on a popularity vote: −100 means
all users classified the lesion as benign; 100 means all users classified the lesion as malignant.
Figure 2 shows the distribution of malignancy over all stimuli. “Malignancy similarity,”
used in subsequent analyses of serial dependence, was computed as the malignancy
difference between any two sequential stimuli. Any two adjacent stimuli on the abscissa
of Figure 2 have high similarity; conversely, any two distantly separated stimuli have
low similarity.

2.6. Semantic Similarity

The semantic similarity is computed via the Learned Perceptual Image Patch Similarity
(LPIPS) metric [26]. This is a popular nonlinear similarity metric utilized in computer vision.
For deep learning models, there are deep features after each convolutional layer [27–29].
The semantic similarity is computed as a sum of weighted differences between the corre-
sponding deep features at different layers. If the semantic similarity is small, two images
would share more patch-wise similarity in the pixel domain, with 0 representing identical.
In particular, we utilized AlexNet [27] as the backbone of the LPIPS metric. Figure 3 shows
two groups of similar and dissimilar skin cancer images based on LPIPS metric. A similar
pair is defined as a pair of images whose similarity is less than the mean similarity of all
image pairs, and vice versa.
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Similar Pairs Dissimilar Pairs

Figure 3. LPIPS semantic similarity [26] example image pairs. Based on this semantic metric, we can
group images into similar pairs vs. dissimilar pairs. Note the patch-wise similarity that similar image
pairs have.

2.7. Diagnostic Performance Evaluation

To measure the presence of serial dependence, we analyzed users’ performance in the
dermatological classification task. Multiple metrics from signal detection theory were uti-
lized, including Sensitivity or Hit Rate (HR) = TP/(TP + FN), Specificity = TN/(TN + FP),
and Error Rate = (FN + FP)/(TP + FN + FP + TN), where “Positive” (P) represents the
malignant case, and “Negative” (N) represents the benign case. Then, TP (True Positive),
FN (False Negative), FP (False Positive), and TN (True Negative) can be defined accordingly.
We also utilized d-prime (d′) and the criterion (c) to evaluate observers’ discrimination and
bias. These can be computed as follows:

d′ = z(HR)− z(FAR)

c = −0.5 ∗ (z(HR) + z(FAR))

where z(·) is the inverse cumulative distribution function of the standard normal distribu-
tion, and False Alarm Rate (FAR) = FP/(FP + TN).

2.8. Feature Tuning Analysis

We evaluated the diagnostic performance metrics described above while taking into
account the sequential similarity between successive images that each observer saw. There
were two types of similarity that we evaluated. In the first one, the malignancy similarity,
we computed the n-back similarity as |Mt−n −Mt|, where Mt represents the malignancy
of the current trial image and Mt−n represents the malignancy of the n-back trial image.
We used the absolute value of the difference because the sign of the malignancy does not
matter. Then, we grouped the malignancy similarities with a group range of 10, resulting in
a total of 20 similarity groups. Performance metrics were computed within each group. In
the end, we obtained the sensitivity, specificity, d′, c, and error rate in relation to the n-back
malignancy similarity.

The n-back semantic similarity can be obtained directly from the LPIPS metric [26],
f (It−n, It), where It represents the current trial image, It−n represents the n-back trial image,
and f (·) is the LPIPS model. Then, the semantic similarities were grouped with a group
range of 0.02, with groups that have insufficient trials excluded. We analyzed groups in the
semantic similarity range of [0.3, 0.68]. Performance metrics were also computed within
each group. In the end, we obtained the performance metrics in relation to the n-back
semantic similarity.
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In order to probe the impact of serial dependence on diagnostic performance, we
measured the net change of those metrics relative to what is expected by chance. To
conservatively estimate this “chance” baseline, we used the future trial (N + 1) stimulus
because this stimulus is not predictable and cannot influence the past. Essentially, because
the stimuli are randomly ordered, the current response is only predictive of the future
stimulus about half of the time, which gives a baseline estimate of chance performance. If
the current judgment is pulled toward the previous stimulus (serial dependence), then the
current trial accuracy will decrease relative to that chance performance. By using the future
(N + 1) accuracy as a baseline, we control for any systematic response biases that observers
might have [30,31]. For example, simply pressing the same button on every trial results in
a response bias, but this will not show up as measured serial dependence because the serial
dependence is normalized relative to the N + 1 trial.

Finally, we computed the net change in sensitivity, specificity, d′, criterion, and error
rate as a function of the sequential similarity between successive images. As serial depen-
dence only occurs for relatively similar features, we expected the serial dependence effect,
if present, to be maximal when sequential stimuli are moderately similar.

2.9. Temporal Tuning Analysis

After checking the feature tuning characteristics, we fit Gaussian curves (Equation (1))
on top of the net change graphs to quantify the magnitude of the serial dependence effect
(as shown in Section 3).

f (x|µ, σ2) =
a√

2πσ2
e−

(x−µ)2

2σ2 (1)

where x is the data variable, µ and σ are the mean and standard deviation of the Gaussian
distribution, and a is an amplitude modulation parameter. Here, a, µ, and σ will be
optimized during curve fitting. After fitting, we report the peak value of the fitted Gaussian
curve as the amplitude of the serial dependence effect.

We analyzed the serial dependence effect magnitude of 1-back (N-1), 2-back (N-2),
3-back (N-3), and 4-back (N-4) trials. Then, we obtained the relation between the serial
dependence effect magnitude and intervening time between trials.

3. Results

Overall summary statistics revealed that observers were highly sensitive to the malig-
nancy discrimination task. Across the user population, sensitivity was 78.72%, specificity
was 74.74%, d′ was 1.46, c was −0.065, and the error rate was 18.6%. These metrics
indicate that observers were able to perform the dermatological judgment task, consis-
tent with the observers having some degree of expertise. These overall metrics, how-
ever, do not reveal whether dermatological judgments on a given image are impacted by
sequential dependencies.

Our primary goal was to measure whether serial dependence was present in dermato-
logical judgments. To do this, we calculated the performance metrics above on a trial-wise
basis, as a function of the sequential similarity between successive images, as illustrated in
Section 2.8.

Figure 4 shows the net change in sensitivity, specificity, d′, criterion (c), and error
rate as a function of the malignancy similarity between current and previous images
(1-back or N-1 trial image). The abscissa of each graph shows the similarity in the rated
malignancy (Figure 2) of successive pairs of images; 0 represents identical successive
images, 200 represents very different sequential images, and the middle range represents
similar images. When the previous stimulus was moderately similar (central regions on the
abscissa), all performance metrics dropped, indicating worse performance. The worst case
occurred when the uncertainty reached the maximum. This is consistent with the findings
in previous studies [1,6]. In summary, sensitivity decreased up to 5.4% on the current trial,
specificity was decreased up to 3.5% on the current trial, d′ was decreased up to 0.20 on
the current trial, criterion (c) was biased up to 0.036 on the current trial, and the error rate
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was increased up to 4.1% on the current trial. Horizontal dashed lines indicate the upper
95% boundary of the permuted null distribution for each bar. Asterisks indicate statistical
significance (p < 0.05, 0.01, 0.001).
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Figure 4. Serial dependence in dermatological classification judgments negatively impacts perfor-
mance. Performance in the discrimination task was assessed with metrics of sensitivity, specificity,
d-prime (d′), criterion (c), and error rate. The abscissa of each graph shows the similarity in the rated
malignancy (Figure 2) of successive pairs of images; 0 represents identical successive images, and
200 represents very different sequential images. The ordinate of each graph shows the net change
in performance metric (e.g., sensitivity or d′) on the current trial as a function of the similarity of
the previous stimulus (N-1 trial) seen by the observer. When the previous stimulus was moderately
similar (central regions on the abscissa), all performance metrics dropped, indicating worse perfor-
mance. For example, when the sequential images were moderately similar, there was an increase
in error rates of up to 4.1% on the current trial. Horizontal dashed lines indicate the upper 95%
boundary of the permuted null distribution for each bar. Asterisks indicate statistical significance
(∗ : p < 0.05; ∗∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001).

As the semantic similarity via the LPIPS metric is nonlinear, we clustered the per-
formance metrics within small groups into two super-groups, i.e., groups of similar and
dissimilar images. The 1-back (N-1) net change in performance for similar and dissimilar
sequential images is shown in Figure 5. When similar sequential images were viewed by
participants (“similar” on the abscissa), participants had higher error rates, lower specificity,
and biased criterion. In particular, the net change in the error rate from similar to dissimilar
groups was up to 3.38%, the net change in the specificity from similar to dissimilar groups
was up to 7.53%, and the net change in the criterion from similar to dissimilar groups was
up to 0.185. The was not a significant change in d′ or sensitivity between similar and dis-
similar groups. Overall, there was a negative impact of serial dependence on performance
measured by most metrics, including, crucially, the error rate.

After analyzing 1-back (N-1) serial dependence via malignancy similarity, we con-
ducted the same analysis for 2-back (N-2), 3-back (N-3), and 4-back (N-4) trials. Then,
Gaussian curves (as described in Equation (1)) were fitted onto the intermediate results
of feature tuning as shown in Figure 6A,B. The amplitude was taken as a measure of the
impact of serial dependence on error rates and d′. As shown in Figure 6C, the amplitude of
the Gaussian was the strongest for the N-1 stimulus and weaker for the following N-2, N-3,
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and N-4 stimuli, indicating that serial dependence is temporally tuned—stronger for more
recent similar stimuli. In particular, the serial dependence (SD) amplitude for error rates
decreased from 3.14% to 0.63%, and the SD amplitude for d′ decreased from 0.17 to 0.038.

Figure 5. Serial dependence in dermatological discrimination judgments impacts performance.
Asterisks indicate statistical significance (∗ : p < 0.05; ∗∗ : p < 0.01). Here, the similarity between
sequential images was measured using the LPIPS metric [26]. When similar sequential images
were viewed by participants (“similar” on the abscissa), participants had higher error rates, lower
specificity, and biased criterion. Sensitivity was not negatively impacted, interestingly, but this was
not significant and did not counteract the negative impacts found in all other metrics.

SD

Amplitude

A.

B.

C.

N-1

N-2

SD

Amplitude

Amplitude of the fitted Gaussian

-0.2

-0.15

-0.1

-0.05

0

0.05

N-1 N-2 N-3 N-4

d prime Error Rate

Identical Similar Dissimilar

Identical Similar Dissimilar

Figure 6. Serial dependence in dermatological discrimination judgments is temporally tuned.
(A) Error rates such as those in Figure 4 were computed for 1-back trials (just as in Figure 4) and
(B) for 2-back trials. The increased error rate near the central part of the abscissa indicates that the
similarity in the image presented 2 trials before the current trial impacted performance, but less so
than the impact of the 1-back stimulus. Gaussian curves were fit to the change in error rates as well
as in d′, and the amplitude was taken as a measure of the impact of serial dependence (SD) on error
rates and d′. (C) The amplitude of the Gaussian—the strength of serial dependence (SD)—was the
strongest for the N-1 stimulus and weaker for the following N-2, N-3, and N-4 stimuli, indicating
that serial dependence is temporally tuned—stronger for more recent similar stimuli.
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4. Discussion

The goal of this study was to test if there is serial dependence in the perceptual judg-
ments of real skin lesions in a relatively realistic situation akin to remote store-and-forward
teledermatology [11,13,32,33]. We found that there was significant serial dependence in
observer judgments of malignancy, and this effect was tuned to the similarity in the sequen-
tial images. Moreover, the effects were temporally tuned, strongest for more recent similar
stimuli, consistent with the diagnostic criteria of serial dependence.

Serial dependence is a specific process in which the brain smooths perceptual interpre-
tations over time to improve efficiency and accuracy and stabilizes the appearance of the
natural world [1,2]. Serial dependence has been found in many perceptual tasks ranging
from low-level [34] to high-level cognition [35]. It has also been reported in some clinically
relevant domains but with less realistic stimuli and tasks [6]. Serial dependence is not a
generalized repetition of responses, and it is not just lapsing, central tendency biases, or
other artitfacts [1,2,31].

The serial dependence effect we found here is not due to artifacts such as lapsing,
central tendency, repeated button presses, or perseverating on the same response. Those
kinds of artifacts are problematic, and they can have a serious detrimental influence on
dermatological judgments, but they are not serial dependence, per se. As in previous
studies [1,23,31], here, we dissociated serial dependence from these other artifacts using
three approaches. First, we confirmed that the measured serial dependence effect here was
tuned to the sequential similarity between images. A perseverating or stereotyped response
(e.g., pressing the same button over and over again for any number of reasons) does not
result in biases that are tuned to the similarity between sequential images. Instead, it simply
results in a uniform and stable shift in criterion. Second, we dissociated serial dependence
from lapsing, stereotyping, and other artifacts by controlling for any biases that seem to
depend on the future. Serial dependence is mainly a bias of the current perceptual decision
toward past experience. The future stimulus is unpredictable and random, and therefore
cannot influence the current decision. However, if there are stereotyped responses (e.g.,
simply repeating the same button press or central tendency biases), this will result in what
seems like the future being predictive of the present. By subtracting out this future bias,
we isolated the 1-trial back effect. This approach—measuring and controlling artifacts by
using the future—is a common control in studies of serial dependence [6,8,30,31]. Finally,
in a third control, we created permuted and shuffled null distributions. These control
for overall biases, lapsing, and stereotyped responses among other potential artifacts as
well. All of these controls together demonstrate that serial dependence genuinely impacted
performance in dermatology judgments.

Previous studies have tried to measure criterion and d′ in dermatological judgments
over time [36–38], but they did not examine trial-wise effects. Serial dependence is a trial-
by-trial effect [1,2,6,8]: sometimes it happens in random sequences (when sequential stimuli
are coincidentally similar) and sometimes it does not happen (when sequential stimuli
happen to be different). In typical vision science experiments, stimuli are random and their
sequential similarity is not measured, considered, or controlled. Serial dependence will
therefore not show up in typical analyses because (1) responses are pooled or collapsed
across blocks of trials and (2) sequential similarity is unknown or ignored. So, it is not
surprising that serial dependence was not found in a previous study [39] because that
study did not measure sequential stimulus similarity and it pooled trials together in blocks,
washing out any serial dependence that may have been present. The results of the large
data set here confirm that serial dependence is likely to be present in other similar data
sets, such as [39]. Serial dependence does not show up in simple signal detection metrics
such as d′ and criterion unless one takes into account the trial-wise nature of the effect.
Serial dependence is not just a shift in the criterion, and it is not just a change in d′. It
can result in both shifts in criterion and d′, as we found here, but these are dynamic over
time–they fluctuate from trial to trial. We were able to measure changes in SDT (Signal
Detection Theory) metrics including d′ and criterion because we analyzed the data in
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a trial-wise manner and, more importantly, conditioned the analysis on the sequential
similarity between stimuli. We found that d′ decreases for similar (non-identical) stimuli.
However, if the stimuli are nearly identical or are very different, then there is no decrease
in d′. Likewise, we found that criterion changed depending on the sequential similarity
between successive stimuli. Both of these results are important: they indicate that standard
SDT metrics including d′ and criterion should not be treated as rigid and fixed over time
but should be considered as dynamic features that can reflect the fluctuations of stimuli
in the world. Future studies of clinician perception and performance should consider the
dynamic nature of signal detection metrics.

Serial dependence is a phenomenon that has been observed in many domains, from
low-level perception to high-level cognition [1,2,34,35,40]. An outstanding question in
the literature on the basic mechanisms of serial dependence is whether feedback might
modulate it. For example, one might speculate that trial-wise feedback could reduce or
eliminate serial dependence. The results here speak to this question because observers did
receive feedback during the task. Despite that feedback, there was still a significant serial
dependence that was tuned to both feature similarity and time. This suggests that feedback
(even where it is possible) is not a panacea to eliminate serial dependence. Pragmatically,
of course, feedback is not possible in clinically relevant settings because there is no prior
ground truth in medical image perception. Nevertheless, it is theoretically and practically
valuable to know that feedback is not enough to overcome the visual system’s built-in
smoothing operations that cause serial dependence.

There are several limitations in this study. First, this study only investigated one
source of perceptual bias–serial dependence. Of course, there are other sources of bias,
individual observer differences, attentional differences, lapsing, and myriad other sources
of error. We controlled these because our goal was to isolate one particular operationally
defined source of perceptual bias: serial dependence. Whether there are interactions among
serial dependence and other types of perceptual bias is an open question for future research.
A second limitation of this study is that the skin cancer images utilized in the experiment
contained only two types of lesion, i.e., nevus (benign) and melanoma (malignant). Though
the dermatological classification task is similar to realistic skin cancer diagnostic scenarios
in some teledermatology settings, it does not fully capture the range or variety of various
skin cancer disease types. Moreover, for the images presented to participants, 57.3%
were benign and 42.7% were malignant. This deviates from a realistic distribution, where
malignant cases are typically much rarer than benign cases. That said, serial dependence
does not hinge on the rate of malignancy—it impacts d′ independent of target frequency,
and it is, therefore, likely to occur even for rare target situations. However, the issue of
disease prevalence remains a very important and open question for future research.

Another limitation is that this study is restricted to store-and-forward teledermatology,
which is naturally different from office-based dermatology clinics in several ways, such
as available resources and diagnostic procedures. For example, office-based clinicians
have multi-modal information about the lesion available, not just photographs, and clin-
ical decisions are more complex than binary ones as in our study. However, during the
COVID-19 pandemic, we witnessed a rapid shift from office-based dermatology clinics
into teledermatology [41,42]. In line with these recent developments, the teledermatology
market size is forecasted to be $67.43 billion in 2030 [43,44]. Accordingly, we chose to inves-
tigate remote store-and-forward teledermatology, as it is a highly scalable and increasingly
employed form of telemedicine. Finally, it is important to mention that most participants
recruited in this study were medical students rather than experts. However, clinicians are
not always more accurate than medical students or residents [39]. The reasons for this
difference in performance might be the recency of training, attention, or other factors. The
simple assumption that trained (older) clinicians are better than less trained (younger) ones
is not clear for remote store-and-forward teledermatology, in particular. Future research is
needed to explore how expertise might interact with remote teledermatology [39].
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There are several additional important avenues of future investigation. Future work
should test whether the serial dependence found here is spatially tuned. For example, if
sequential images were viewed on different screens (rather than a single mobile device),
would there be a reduction in serial dependence? Moreover, how does attention to the
task modulate the serial dependence in dermatological judgments? Future studies should
address these questions, along with designs that incorporate a larger variety of lesions and
a more realistic distribution of malignancy. Finally, future studies should also focus on how
to utilize serial dependence tuning functions, i.e., feature tuning and temporal tuning that
we found here to potentially alleviate the biases reported here.

5. Conclusions

In this study, we analyzed 758,139 skin cancer diagnostic records from an online
app in which participants made a series of malignancy discrimination judgments. We
quantified sequential malignancy similarity and sequential semantic similarity between
successively viewed images, and we investigated classification performance as a function
of these similarity metrics. We found significant serial dependence effects in perceptual
discrimination judgments, which negatively impacted performance measures, including
sensitivity, specificity, and error rates. Moreover, we showed that the serial dependence
was tuned to the similarity in the images, and it decayed over time. These findings help
understand one potential source of systematic bias and errors in medical image perception
tasks and hint at useful approaches that could alleviate the errors due to serial dependence.
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FAR False Alarm Rate
HR Hit Rate
C Criterion
d′ d prime
M Malignancy
I Image
SDT Signal Detection Theory
2AFC Two-Alternative Forced Choice

Appendix A. Data Preprocessing

In total, 7 of the 13 variables of the data provided by the app are of interest to this
research paper and define each data point. They are defined as: User ID (defining a unique
ID for each user of the app), score (defining if the answer given has been correct (100) or
incorrect (0)), response submitted at (defining at what particular time the response of the
user was given), problem appeared at (defining at what particular time the image appeared
on the device of the user), origin (defining the image name of the particular image shown),
current correct answer (defining if the correct answer is either malignant or benign), and
chosen answer (defining if the answer given is either malignant or benign).

Prior to analyses, the following steps were conducted to include only valid data points
in the analyses: first, all data points with a larger response time than 3600 s (1 h) were
excluded. As data were collected on a smartphone app, it is assumed that for responses
over 1 h, the app was running without users paying attention to it. Second, all remaining
data points with a longer response time than three standard deviations of the raw data were
excluded, which is a common method to exclude outliers [45]. Third, all users with less
than 10 trials were excluded to achieve reliable data for the calculation of n-back accuracy.
In total, 1083 data points were excluded due to invalidity. The exclusion of these data
points did not qualitatively change the pattern of results.

Identical Similar Dissimilar
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Figure A1. Relationship between difference in malignancy and the 1-back accuracy. The abscissa
shows the similarity in the rated malignancy (Figure 2) of successive pairs of images; 0 represents
identical successive images, and 200 represents very different sequential images. The ordinate shows
the net change in 1-back accuracy on the current trial as a function of the similarity of the previous
stimulus (N-1 trial) seen by the observer. When the previous stimulus was moderately similar
(central regions on the abscissa), responses were consistently attracted towards the previous stimulus.
This pulling effect was up to 7%. The dynamic change of the 1-back accuracy is consistent with
performance metrics’ change in Figure 4.

Appendix B. Evidence of Attracting Effect

Overall, we found significant serial dependence effects in dermatological discrimi-
nation judgments. One of the important properties of serial dependence is the attracting
effect. Here, we show evidence of attraction in perceptual discrimination judgments as
well. We defined the 1-back accuracy as

1-back accuracy =
#current response == previous stimulus label

#trials
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Next, we measured the net change of the 1-back accuracy relative to what is expected
by chance. Similarly, we used the future trial (N + 1) stimulus as the “chance” baseline.
If there is an attracting effect, the 1-back accuracy will be greater than 0. In reverse, if
a repulsion effect occurs, the 1-back accuracy will be smaller than 0. In summary, we
found evidence of an attracting effect when previous stimuli were moderately similar, thus
aligning with the serial dependence property (Figure A1).
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