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Abstract

Groups of objects are nearly everywhere we look. Adults can perceive and understand the ‘gist’ of multiple objects at once,
engaging ensemble-coding mechanisms that summarize a group’s overall appearance. Are these group-perception mechanisms in
place early in childhood? Here, we provide the first evidence that 4–5-year-old children use ensemble coding to perceive the
average size of a group of objects. Children viewed a pair of trees, with each containing a group of differently sized oranges. We
found that, in order to determine which tree had the larger oranges overall, children integrated the sizes of multiple oranges into
ensemble representations. This pooling occurred rapidly, and it occurred despite conflicting information from numerosity,
continuous extent, density, and contrast. An ideal observer analysis showed that although children’s integration mechanisms are
sensitive, they are not yet as efficient as adults’. Overall, our results provide a new insight into the way children see and
understand the environment, and they illustrate the fundamental nature of ensemble coding in visual perception.

Research highlights

• Specialized ensemble-coding mechanisms are in place
at 4–5 years of age.

• Sensitive group perception can occur in spite of poor
sensitivity to individuals.

• Despite high sensitivity, ensemble coding is still not
fully developed in young children.

• Children may use ensemble percepts to grasp the gist
of a scene.

Introduction

Take a trip to the market and you will appreciate how
readily people perceive and evaluate groups. Dozens of
oranges are seen not as individual objects, but as
collectives of small and large, groups of clementines and
Valencia. Gestalt impressions such as these provide a
window into the phenomenology of visual experience,
revealing that much of awareness is at the level of the

group (Koffka, 1935). But there is an apparent paradox
about this kind of perception. The capacity limits of
attention and memory only allow us to perceive and
remember precise information about a few objects at a
time (Awh, Barton & Vogel, 2007; Luck & Vogel, 1997;
Scholl & Pylyshyn, 1999; Simons & Levin, 1997;
Whitney & Levi, 2011). How then, does the visual
system overcome these bottlenecks and enable us to see
what a group of objects is like all at once, as a
collective?
To see groups, adults engage a process known as

ensemble coding. In ensemble coding, information
about multiple objects is compressed into a summary
statistic – a singular representation that provides access
to the group in the form of a gist percept (for reviews,
see Alvarez, 2011; Whitney, Haberman & Sweeny,
2014). This compression is what allows ensemble codes
to overcome capacity limits, providing more informa-
tion about groups than would be possible by inspecting
each member of a set, one after another. In fact, with
ensemble coding, precise information about individuals,
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like each orange’s unique size, is lost in favor of the
group percept, like the average size of all the oranges
in the group (Ariely, 2001; Haberman & Whitney,
2009, 2011). Moreover, ensemble codes need not be
drawn from every member in a group (Dakin, Bex,
Cass & Watt, 2009) – rapid averaging across a subset
of members is enough to provide surprisingly high
sensitivity, even when there is insufficient time to
serially attend to individual group members (e.g.
Sweeny, Haroz & Whitney, 2013). In fact, this averag-
ing process overcomes noise in local representations
(Alvarez, 2011), allowing adults to perceive crowds
more precisely than they perceive individuals (Sweeny,
Haroz, & Whitney, 2013). Efficient and sensitive,
ensemble codes underlie an important part of con-
scious phenomenology, providing the gist experience
that allows adults to regard sets of objects as holistic
groups with particular collective characteristics. We
might think of ensemble perception as involving a kind
of ‘lantern consciousness’ in which many objects are
seen at once, rather than the more focused ‘spotlight
consciousness’ that comes with attention to individual
objects (Gopnik, 2009).

Less is known about what visual experience is like
early in life. Do children see their surroundings like
adults, appreciating multiple objects as groups with
collective properties? Or is children’s visual experience
simply noisier, or less cohesive in general than adults’?
Children’s perception is certainly coarse – spatial and
temporal resolution develop slowly (Benedek, Benedek,
K�eri & Jan�aky, 2003; Ellemberg, Lewis, Liu & Maurer,
1999; Farzin, Rivera & Whitney, 2010, 2011; Jeon,
Hamid, Maurer & Lewis, 2010), and crowding, the
impairment in perceiving an individual item when it is
surrounded by clutter, is particularly strong in childhood
(Jeon et al., 2010; Semenov, Chernova & Bondarko,
2000). Moreover, children’s attentional capacities are
also limited compared to those of adults, particularly
their capacities for focused, endogenous top-down
attention (Enns & Girgus, 1985; Goldberg, Maurer &
Lewis, 2001; Johnson, 2002; Ristic & Kingstone, 2009).
These limitations make it easy to imagine that, when
children are viewing many objects at once, their visual
experience would be noisy and fractured rather than
holistically coherent.

On the other hand, studies of cognitive development
show that even infants are remarkably sensitive to
statistical and relational features of scenes, and that
they seem to discriminate scenes based on judgments
about those features (e.g. Spelke, Breinlinger, Macomber
& Jacobson, 1992; Fiser & Aslin, 2002; Kirkham,
Slemmer & Johnson, 2002; Xu & Garcia, 2008).
Furthermore, children are adept at making inferences

from subtle statistical cues even by preschool age (see
Gopnik & Wellman, 2012, for a review).

Children might, in fact, be able to mitigate their
perceptual and attentional limitations by engaging
ensemble-coding strategies. By pooling independent
samples of similar objects, children may be able to
average out the noise, improving their visual sensitivity
to perceive groups of objects in scenes. Here, we sought
to test these competing hypotheses by determining
whether or not ensemble-perception mechanisms are in
place in childhood.

Specifically, we asked: when 4–5-year-old children see
many objects at once, do they determine the average
object size in the group by considering information
from multiple objects (i.e. ensemble coding), or do they
make coarse judgments about the group based only on
a single object? Judgments of ensemble size based on
just one object are likely to be coarse, and not ideal,
because the size of the sampled object may not
necessarily be representative of the entire group. We
investigated perception of size for two reasons. First,
ensemble-size perception is robust and well understood
with adults (e.g. Ariely, 2001; Chong & Treisman,
2003). Second, size is a relatively simple visual feature
in the hierarchy of visual processing (Desimone &
Schein, 1987; Dumoulin & Hess, 2007). We therefore
reasoned that if any ensemble coding is operative in
childhood, it is likely to be manifested in a judgment of
size.

While the perception of basic collective properties of
homogeneous groups, like numerosity, comes online
early in life (Zosh, Halberda & Feigenson, 2011), it is
still unclear whether children possess the ensemble
processes necessary to summarize properties of hetero-
geneous groups. This distinction is critical. Only ensem-
ble coding affords humans the ability to average
information across many individuals that differ in
appearance, telling us not just how much stuff there is,
but what that stuff is like. Thus, the current research
represents an important advance in understanding the
development of complex group perception.

Why would it matter if ensemble mechanisms were or
were not in place in childhood? Adults are already
known to use ensemble coding to overcome their own
perceptual limitations. Specifically, pooling information
into gist percepts allows adults to recover information
about individuals that would otherwise be inaccessible
or unrecognizable due to crowding (Fischer & Whitney,
2011), visual short-term memory capacity (Alvarez &
Oliva, 2008; Haberman & Whitney, 2011), attentional
capacity (Chong & Treisman, 2003), or even congenital
deficits in recognition ability (Yamanashi Leib, Puri,
Fischer, Bentin, Whitney & Robertson, 2012). If
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children also possess ensemble mechanisms, they could,
in principle, use them to overcome their own capacity
limits. This would be especially useful at 4–5 years of
age, when children’s perception of individual objects is
already more limited than that of adults’, and is
constrained by gradually developing spatial resolution
(Farzin et al., 2010), selective attention (Enns & Girgus,
1985; Goldberg et al., 2001; Johnson, 2002; Ristic &
Kingstone, 2009), and visual working memory capacity
(Cowan, AuBuchon, Gilchrist, Ricker & Saults, 2011;
Simmering, 2012; Wilson, Scott & Power, 1987). For
these reasons, we tested 4–5-year-old children. Testing
children at this age has an additional benefit – we could
ask them to make explicit judgments of groups in
the same experimental paradigms as those used with
adults, which would allow us to directly compare the
strength of children’s and adults’ ensemble integration
capabilities.
If ensemble perception mechanisms are in place early

in life, then just like adults, children should be able to use
ensemble coding to extract information about average
size in a group of objects. Alternatively, finding that
children are unable to access summary information at
the level of the group would reveal that their visual
experience is even more limited than previously thought.
As such, our results should have far-reaching implica-
tions, not just for characterizing the development of
ensemble coding for the first time, but also for providing
new insights into the phenomenology of visual experi-
ence in childhood.

Experiment 1

Methods

Observers

Ten children (M = 4.67 years, SD = 0.58 years, five
females and five males), and 10 adults (M = 28.9 years,
SD = 4.6 years, five females and five males) participated
in the experiment.

Stimuli

Children were seated in front of a laptop but were free to
move during the experiment, so the visual angles noted
below represent the size of the stimuli from an average
distance of 57 cm. These values would have varied
between �15% and +20% given 10 cm of movement
forward or backward. Because children are more likely to
cooperate when an experiment is presented as a game, we
created a cartoon scene which we described as a chance to
help a ‘hungry monkey’ determine which of two trees had
the largest oranges (Figure 1a). Every aspect of this
cartoon scene was prepared in Photoshop (Adobe Photo-
shop CS5 Version 12.0). Oranges had an orange hue. The
two treeswere identical (16.1�9 19.2�), each with a green
top and a brown trunk. The edges of the trees abutted
one another. The cartoon monkey (2.1� 9 4.81�) had
brown fur. Green grass lined the bottom border of the
screen (30.1� 9 2.61�). Oranges were presented along an

(a) (b)

Figure 1 (a) Each tree had a range of differently sized oranges. In the group condition, multiple oranges were available within each
tree for determining which had the largest oranges, overall. In the single condition (not shown), only a randomly selected pair of
oranges from different sets of full groups was visible. Both the single-via-single analysis and the group-via-subset analysis were
conducted on the same data from the single condition. (b) Children (black bars) selected the tree with the largest oranges, overall,
more often when the full sets of oranges were visible (shown in the group-via-group analysis) compared to when only a single orange
(a subset) was visible in each tree (shown in the group-via-subset analysis). This occurred despite high sensitivity for discriminating
individual oranges observed in the single-via-single analysis. Adults (white bars) showed the same pattern. ** represents p < .01.
Error bars reflect �1 SEM (adjusted for within-observer comparisons).
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invisible grid (9.85� 9 6.6�) centered in each tree. The
entire scene appeared over a blue background.

On each trial, we generated groups of eight oranges for
each tree. Each tree contained four different orange sizes,
and one tree (randomly determined as the right or left)
had slightly larger oranges, on average. Individual orange
sizes ranged from 1.69� to 2.58� across trials. On each
trial, the range of orange sizes within each tree (0.294�)
and the difference in average orange size between the
trees (0.147�) remained constant. Each orange in the left
tree was always a different size from any orange in the
right tree. Across trials, the average orange size collapsed
across both trees ranged from small to large (1.91�, 1.97�,
2.02�, 2.06�, 2.11�, 2.16�, 2.21�, 2.26�, 2.31�, or 2.36�).
On a given trial, the average orange size in either tree was
always .074� smaller or larger than one of these values.
Oranges based around these 10 sizes were each generated
four times for a total of 40 trials across two blocks of 20
trials each. The variability in orange sizes within each
tree and the overlapping sizes between the trees served an
important purpose – it ensured that sampling multiple
oranges from each tree (i.e. building ensemble represen-
tations) would lead to better judgments of average size
than simply comparing a single orange from each tree
(see Table 1 for a detailed description of orange sizes,
conditions, and analyses in two hypothetical trials).

Procedure

Each trial began with a cartoon monkey standing equi-
distant from the pair of trees. Each observer was free to
look directly at the oranges for anunlimited duration, and

then indicated which tree had the larger oranges, overall,
by moving the monkey (4.31� leftward or rightward)
under one of the trees using the left or right arrows on a
keypad. Next, the observer pressed the spacebar once to
finalize his or her response and again to start a new trial. A
practice blockof four trials preceded themain experiment.
In this practice block, the experimenter explained (1) that
themonkeywas hungry and preferred to eat large oranges,
(2) that the observer could help the monkey by moving
him to the treewith the larger oranges, overall, and (3) that
the observer should consider the sizes of all of the oranges
visible to him or her when making a decision.

On half of the trials, full groups of eight oranges
appeared in each tree (Figure 1a) – the group condition.
In our analysis of this condition, we calculated the
proportion of trials in which each observer selected the
tree with the largest average orange size, presumably via
an evaluation of the groups. We refer to this as the group-
via-group analysis.

However, the main objective of this investigation was
not simply to determine whether children performed well
when comparing groups. Rather, it was to determine how
much information they used to evaluate these groups. To
answer this question, we included a control condition –
the single condition – to determine what performance
would have looked like if children judged the groups
simply by comparing a single orange from each tree.
Specifically, on the other half of trials, we again
generated full groups of eight oranges for each tree,
but only displayed a single randomly selected orange (i.e.
a subset) from each tree. We recorded the average orange
size in each full group as well as the sizes of the single

Table 1 Conditions, analyses, individual oranges sizes, and group average sizes from two hypothetical trials in Experiment 1

Condition Analysis Tree Orange sizes (1–8) Group Avg

Group Group
-via-

group

L 68 68 72 72 76 76 82 82 74
R 74 74 78 78 82 82 86 86 80

Single Single Group
-via- -via-

Single Subset

L 86 86 90 90 94 94 98 98 92
R 80 80 84 84 88 88 92 92 86

Note: In each trial of each condition, a separate group of eight oranges was generated for the left and right tree. For simplicity in this table, the sizes
(diameter, in pixels) of the oranges in each tree are listed in order from smallest to largest. In the group condition, in which all eight oranges were
presented and visible in each tree, we analyzed how well children and adults evaluated the average size in each tree – the group-via-group analysis. In
this trial of the group condition, the right tree happens to have the larger average orange size (80 pixels). Note, however, that the largest orange in the
left tree was larger than the smallest orange in the right tree. This illustrates how comparing a random pair of oranges in each tree would not always
lead to a correct response about the groups. In the single condition, eight oranges were again generated for each tree, but only one randomly selected
orange (in bold) was visible in each tree. The rest of the oranges (in italics) were not presented. We conducted two analyses – the single-via-single
analysis and the group-via-subset analysis – on the same data from the single condition. The single-via-single analysis allowed us to evaluate sensitivity
for comparing individual oranges. Here, the orange in the right tree (92 pixels) is the largest, and selecting the right tree leads to a correct answer in the
single-via-single analysis. The group-via-subset analysis allowed us to determine what performance in the group condition would have been like had
observers based their estimates on a single randomly selected orange in each tree. Here, accurately comparing this randomly selected pair of oranges
would not have led to a correct response about the groups. Better performance in the group condition relative to this simulated performance in the
group-via-subset analysis would mean that observers’ did not simply compare random pairs of oranges in the group condition.
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randomly displayed oranges. Trials from both conditions
were intermixed within both blocks.
We analyzed the data from this same set of trials in the

single condition in two different ways. In the group-via-
subset analysis, we calculated the proportion of trials in
which eachobserver’s selection (made via the subsets, each
of which always contained just one orange) happened to
also be the tree with the largest group average. This
calculation simulated what performance would have
looked like in the group condition if observers had based
their judgments on a single orange in each tree. The
purpose of this single condition, as analyzed in this way,
was not to askobservers tomake judgments of groups that
they could not see, whichwould be impossible. Rather, this
analysis is analogous to an empirical simulation of what
performance in the group-via-group conditionwould have
looked like ifobservers hadnot engaged crowdperception,
combining information from several objects, but instead
had based their judgment on a single object that we
randomly selected for them.
In the single-via-single analysis, we calculated the

proportion of trials in which each observer selected the
tree that contained the subset with the largest orange.
That is, within the single condition, we simply deter-
mined how often the observer chose the tree with the
larger single orange. This latter calculation allowed us to
measure baseline sensitivity to individual size differences
(see Table 1 for a detailed description of these analyses in
two hypothetical trials).
If observers utilize ensemble coding, they will select

the tree with the largest oranges, overall, more often when
the full groups are visible. Performance should be better
in the group condition than in the group-via-subset
analysis of the single condition – the ensemble advantage.
This should occur despite high baseline sensitivity for
comparing individual oranges and concomitant high
performance in the single-via-single analysis.

Results

Children showed high sensitivity for comparing the sizes
of individual oranges; they were very accurate at
determining which single orange was larger (the single-
via-single analysis; Figure 1b). They were also highly
precise and accurate when they compared groups of
oranges (the group-via-group analysis). Performance in
the single-via-single analysis and in the group condition
were strongly correlated (R2 = .868, p < .01). Most
importantly, children’s comparisons of groups would
have been less precise if they had been made via a single
random pair of oranges; children selected the tree with
the larger oranges less often when only a single randomly
selected orange was visible from each group (t[9] = 4.13,

p < .01, Figure 1b). This difference – the ensemble
advantage – directly shows that when children made
judgments about groups of oranges, they did so by
evaluating information from multiple oranges and not
just by using a single orange within each group.
Adults were excellent at discriminating the sizes of

individual oranges, making even fewer errors than
children in the single-via-single analysis (t(18) = 2.61,
p < .05). Adults were also adept at perceiving groups,
and they made more precise comparisons of groups via
consideration of multiple oranges in each tree (the
ensemble advantage: t[9] = 4.91, p < .01, Figure 1b).
Overall, the similar pattern of results from children and
adults suggests that ensemble coding is in place even at
4–5 years of age. Thus, while children’s perception is
certainly noisier, consistent with previous results (Ben-
edek et al., 2003; Ellemberg et al., 1999; Farzin et al.,
2010, 2011; Jeon et al., 2010), they appear to employ an
ensemble-coding strategy which averages out noise and
achieves a more precise percept of the group than would
otherwise be possible.
Exactly how refined are children’s group perception

mechanisms? In order to properly evaluate children’s
sensitivity to groups, it was first necessary to determine
whether their lower overall performance was due to
perceptual limitations, or instead due to lapses in attention
or motivation. We accomplished this by deconstructing
data from the single-via-single analysis, evaluating per-
formance across the wide range of size differences that
resulted from randomly selecting and displaying a single
orange from each tree. Specifically, we separately concat-
enated data from children and adults, and then measured
each group’s discrimination performance as a function of
the differences in size between the two randomly visible
oranges. For both children and adults, the proportion of
correct responses increased with larger differences in size,
and these increases were well fit by logistic functions
(children;R2 = .852, adults;R2 = .911, Figure 2a).We then
used these logistic fits to separately derive probability
density functions representing children’s and adults’
sensitivities to size differences. Specifically, using our
logistic fits from Figure 2a, we simply determined the
increase in percent correct that accompanied incremental
increases (in 0.2 degree steps) in the size difference of the
two oranges being compared. This yielded half of a
Gaussian-shaped distribution, which we then mirrored
to produce a full probability density function separately
for children and adults. The standard deviations of
these density functionswere remarkably similar (children;
SD = .098�, adults; SD = .10�).
This similarity has two important implications. First,

it indicates that children’s sensitivity for comparing the
sizes of individual objects is fully developed at 4–5 years
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of age. Second, it shows that children’s lower baseline
level of performance reflected non-perceptual limita-
tions, meaning that any comparison of children’s and
adults’ sensitivity to groups should be made indepen-
dently of this baseline difference. That is, the differences
between children and adults were not due to basic
differences in their perceptual abilities, but were more
likely due to lapsing, inattentiveness, or a decision stage
process. Children might, for example, be less good than
adults at actually implementing the decision to pick a
particular tree.

Ideal observer analysis

How sensitive are children’s group perception mecha-
nisms compared to adults’? How many oranges did
children and adults integrate into their ensemble codes?
To answer these questions, it was first necessary to
calculate children’s and adult’s improvements in pro-
portion correct – their ensemble advantages – indepen-
dently of baseline differences in performance.
Specifically, we divided each observer’s ensemble advan-
tage by his or her ceiling performance in the single-via-
single analysis. We then performed an ideal observer
analysis to estimate the number of oranges children and
adults would have needed to integrate to produce
these observed ensemble advantages. This analysis is
straightforward and conservative; similar linear pool-
ing models have successfully characterized ensemble
coding in adults (Parkes, Lund, Angelucci, Solomon &
Morgan, 2001; Sweeny, Haroz & Whitney, 2012). This

assumption of linearity is reasonable considering (1)
the small range of sizes in this experiment (Chong
& Treisman, 2003), and (2) the very similar results we
obtained when we ran this same ideal observer analysis
using values adjusted to reflect the compressive-non-
linear nature of size perception (Teghtsoonian, 1965).

We began our ideal observer analysis by simulating
performance in the group-via-group analysis and the
group-via-subset analysis. First, we generated eight
orange sizes for each tree using actual values from the
experiment. Next, we simulated noisy perception of each
orange by (1) centering Gaussian-shaped sampling distri-
butions at each simulated orange size, each with a
standard deviation equal to our estimates of children’s
or adults’ single-orange sensitivity (see above) and (2)
sampling a random value from each distribution. This
sampling produced groups of eight noise-perturbed
oranges in each tree. Last, we simulated performance that
would have occurred with different numbers of oranges
integrated.We started by randomly selecting subsets (1–7)
of our simulated oranges or the full group of eight oranges
from each tree. For each simulated subset in each tree, we
calculated the average orange size (the linear mean of the
subset) and selected the tree with the largest average value
as the simulated response. We did not add noise in this
integration stage. As in our experiment, we notedwhether
the simulated response (based on each subset)matched the
correct response that would be obtained from comparing
the averages of the full groups in each tree.

We completed this procedure 50,000 times and deter-
mined the proportion of these trials in which each

(a) (b)

Figure 2 (a) Children’s and adults’ abilities to discriminate size in the single-via-single analysis. Both groups’ performances
improved with larger differences in size and were well fit by logistic functions. We used these logistic fits to simulate early-stage
noise in our ideal observer analysis. (b) Number of oranges that children and adults integrated across both trees, estimated from our
ideal observer analysis. We used a linear pooling algorithm to predict the ensemble advantages that children (filled circles) and
adults (open circles) would gain from integrating different numbers of oranges in each tree. The intersection of children’s and adults’
observed ensemble advantages (horizontal lines) with power functions fitted to our predicted ensemble advantages provided
estimates of the number of oranges each group integrated across both trees (vertical lines).
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number of oranges integrated (e.g. four across both trees,
five across both trees, etc.) produced the correct
response. We then calculated the difference between
these values and the proportion of correct responses that
would have been obtained from using a subset of one
orange from each tree. In this way, we simulated the
ensemble advantages children and adults would have
produced by integrating different numbers of oranges
(Figure 2b). We then fit the increase in these simulated
ensemble advantages with a power function. The fits
were excellent (R2 > .977, p < .01 for children and
adults). By locating the points where children’s and
adults’ observed ensemble advantages intersected with
these fits, we were able to estimate the number of oranges
that each group integrated into their respective ensemble
codes (Figure 2b). We found that, across both trees,
children integrated at least 4.24 oranges and adults
integrated at least 7.18 oranges. We obtained similar
patterns of results by comparing subsets with different
sizes but equivalent totals (e.g. averaging four and two
oranges from each tree instead of three and three from
each tree). However, for each combination with unbal-
anced subsets, it would have been necessary to integrate
more oranges than with balanced subsets, with even the
closest estimates requiring an extra orange to be
integrated. While we cannot be sure what approach
observers used, especially on any given trial, our
approach of using balanced subsets at least provides
the most conservative estimate of the number of oranges
integrated.
This analysis takes into account the differences in

attention, motivation, decision-making and other
sources of noise that are reflected in the differences
between adults and children on the single-orange task.
However, like other ideal-observer simulations of ensem-
ble coding (Myczek & Simons, 2008), ours does not
include late-stage noise in the integration process.
Accounting for this attribute of real, imperfect observers
would only increase estimates of integration efficiency
since more samples would need to be pooled to reach the
observed enhancement. As such, our simulation provides
a conservative, lower-bound estimate of integration
efficiency. We also do not know whether there might be
developmental differences in this late-stage noise, or
whether such differences would influence the relative size
of the ensemble advantage for adults and children.

Experiment 2

The children in our first experiment showed a pattern of
results consistent with integrating multiple oranges to
perceive average size. Nevertheless, their sensitivity to

single oranges was positively correlated with their
sensitivity to groups. In order to be sure that children
possess a distinct mechanism for evaluating crowds, it is
important to demonstrate that sensitivity to crowds
persists even when it is dissociated from sensitivity to
individual objects. We thus conducted Experiment 2 to
determine whether children can be good at perceiving
crowds despite poor sensitivity to individuals. Such a
result would clearly show that children do indeed possess
unique ensemble size representation. In addition, we
wanted to determine whether or not sensitive crowd
perception persists when children have insufficient time
to serially attend to individual oranges and cognitively
compute the average size. This alternative strategy could
have been possible with the unlimited viewing duration
in Experiment 1, and might not qualify as ensemble
coding (Myczek & Simons, 2008), in which the average
percept is achieved through rapid integration in parallel,
bypassing the need for focused attention. Rejection of
this kind of focused-attention strategy has been impor-
tant for providing rigorous evidence of summary statis-
tical perception (Ariely, 2008; Chong, Joo, Emmanouil &
Treisman, 2008; Myczek & Simons, 2008), and it is
especially relevant here, since larger objects are known to
draw bottom-up attention over smaller objects when in
groups (Proulx, 2010; Treisman & Gormican, 1988).
To evaluate both of these questions, in Experiment 2,

we tested whether the integration we observed in
Experiment 1 could occur when children viewed groups
for only 1500 msec. We reasoned that, with this shorter
viewing time, children would be more likely spread their
attention to access the gist of the crowds independent
from, and at the expense of, sensitivity to individual
oranges. Although 1500 msec may seem relatively long
compared to durations typically used in research with
adults, it was the shortest duration that children would
endure in a round of pilot testing. Importantly, we began
Experiment 2 with a preliminary investigation (Experi-
ment 2A), which confirmed that 1500 msec was an
insufficient amount of time for children to engage a
serial search strategy for the largest orange.

Experiment 2A

Methods

Observers

A new group of 20 children (M = 4.26 years, SD = .877
years, seven females and 13 males), and a new group of
20 adults (M = 20.28 years, SD = 2.39 years, 12 females
and eight males) participated in the experiment.
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Stimuli and procedure

The stimuli and procedure were identical to those in
Experiment 1, with oranges displayed until each observer
responded. The only exception was that observers were
instructed to point to the largest orange on the screen as
quickly as possible. The experimenter made sure that
each child was looking at the screen before pressing the
spacebar to initiate the trial. The experimenter pressed
the right- or left-arrow key as soon as the child pointed
to the screen, taking care to respond as soon as the
child’s finger clearly indicated the orange of his or her
choice. The experimenter repeated the instructions to
find the largest orange and point to it as quickly as
possible throughout the experiment. The same procedure
was used for testing adults so that any experimenter-
imposed response delay would be equivalent across
reaction times for children and adults. Children com-
pleted 10 trials from the group condition and 10 trials
from the single condition, all in a single block of testing.
Adults completed twice the number of trials intermixed
across two blocks of testing.

Results

To obtain a conservative estimate of reaction times, we
removed trials in which RTs were greater than 2.5
standard deviations from each observer’s mean reaction
time. We conducted this trimming separately for trials
where an observer viewed groups and trials where that

same observer viewed a single orange in each tree. We
did not exclude trials based on whether or not the
observer actually pointed to the largest orange.

Not surprisingly, children responded faster on trials
where a single orange was presented in each tree (M =
2607 msec, SD = 780 msec) compared to when a group
was presented in each tree (M = 2984 msec, SD = 1042
msec), t(19) = 2.77, p < .01, d = .619. Critically, mean RTs
on trials where children viewed groups were longer than
1500 msec, t(19) = 6.37, p < .01, d = 1.42. A histogram
combining raw RTs from all children clearly shows that,
on trials from the group condition, 99.48% of individual
RTs were greater than 1500 msec (Figure 3a). There was
no relationship between RT in the group condition and
age, R2 = .087, ns. While some portion of children’s
reaction times reflects the additional time it took for the
experimenter to record his or her response, this added
time would have been equivalent for each observer in
each condition, and it is reasonable to expect that it
would have been relatively small, as the experimenter
recorded the child’s response as soon as his or her finger
touched the screen.

Like children, adults responded faster on trials where a
single orange was presented in each tree (M = 1180 msec,
SD = 112 msec) compared to when a group was
presented in each tree (M = 1387 msec, SD = 171 msec),
t(19) = 7.29, p < .01, d = 1.63. Unlike with children,
adult’s mean RTs on trials from the group condition
were shorter than 1500 msec, t(19) = 2.81, p < .05,

(a) (b) (c)

Figure 3 (a) Histograms of children’s (black bars) and adults’ (gray line) reactions times for pointing to the largest orange on the
screen in Experiment 2A. RTs from individual trials were pooled for each group after extreme RTs were excluded separately for each
observer (see text for details). Note that children’s RTs were overwhelmingly longer than the 1500 msec they had to view the oranges
in Experiment 2B. (b) With the shorter presentation time in Experiment 2B, there was no relationship between children’s sensitivity to
single orange size differences and group size differences. (c) Based on a median split, the children who had the lowest sensitivity for
comparing individual orange sizes (not above chance-level performance, left bar) showed higher sensitivity for comparing the sizes
of groups. * represents p < .05. Error bars reflect �1 SEM (adjusted for within-observer comparisons).
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d = .629. A histogram combining raw RTs from all adults
illustrates that 77.2% of individual RTs were less than
1500 msec (Figure 3a). Note that adult RTs included the
same experimenter-produced additional delay included
in child RTs.
We mention reaction times from adults merely to

illustrate the relatively long amount of time it takes
children to complete this particular type of visual
search. While it would be odd to describe 1500 msec as
a brief duration in an experiment designed for adults,
this time is indeed brief and challenging for 4–5-year-
old children. Most importantly, these results confirm
that 1500 msec is an insufficient amount of time for 4–
5-year-old children to point to what they believe to be
the largest orange on the screen. We can thus be
confident that, should children display any sensitivity
for perceiving groups displayed for this duration in
Experiment 2B, this sensitivity will not have emerged
from engaging a serial search strategy, and it should
not be related to sensitivity for perceiving single
oranges.

Experiment 2B

Methods

Observers

A new group of 27 children (M = 4.35 years, SD = .81
years, 15 females and 12 males), and 20 adults (the same
observers from Experiment 2A) participated in the
experiment.

Stimuli and procedure

The stimuli and procedure were identical to those in
Experiment 1 in which children were instructed to
determine which tree had larger oranges overall, except
that the oranges were shown for only 1500 msec. On each
trial, the experimenter made sure that each child was
looking at the screen before pressing the spacebar to
initiate the trial.

Results

Even with the shorter duration, children were above
chance for comparing the sizes of individual oranges in
the single condition (M = .642, SD = .193), t(26) = 3.84,
p < .01, d = .741, and for comparing groups of oranges
in the group condition (M = .62, SD = .183), t(26) = 3.42,
p < .01, d = .658. Unlike with an unlimited presentation
time, sensitivity for discriminating mean size in briefly

presented crowds was not related to sensitivity for
discriminating the sizes of individual oranges (R2 =
.0001, ns, Figure 3b). These results show that children
are able to make comparisons of average size in groups
without relying on their sensitivity to individual oranges.
The fact that perception of crowds and individuals

were independent in this experiment allowed us to more
conclusively evaluate the possibility that some observers,
as a group, might have been better at extracting
information from groups than from single oranges. We
did this by dividing the children into two groups using a
median split based on single-orange sensitivity. The 13
children who discriminated single oranges with the
lowest sensitivity (M = 47.7% correct, not significantly
different from chance-level performance, t[12] = 0.68, ns)
nevertheless discriminated the average sizes of groups of
oranges above chance level (t[12] = 2.78, p < .05,
Figure 3c). Moreover, and surprisingly, these children’s
group discriminations were actually better than their
discriminations of a single orange from each tree (t[12] =
3.13, p < .01, Figure 3c). Overall, these surprising
patterns of results show that rapid-acting ensemble
perception mechanisms are in place by 4–5 years of age
and that they operate independently of sensitivity for
perceiving individual objects.

Experiment 3

The findings from Experiments 1 and 2 converge to
suggest that children do indeed integrate and summarize
size information from multiple oranges to make evalu-
ations of groups – ensemble coding. However, it is still
possible that they could have used other information
related to average size, like increased density or the
amount of orange color on the screen, to make their
choices. We conducted Experiment 3 to directly rule out
these image-based explanations.
Specifically, we manipulated the numerosity of the

groups such that one tree always had eight oranges (as in
the previous experiments) and the other always had six
oranges, with reduced density and total orange color
displayed. This design allowed us to conclusively deter-
mine whether or not ensemble size integration is avail-
able at 4–5 years of age, and if so, how it interacts with
orthogonal image-based information.

Methods

Observers

A new group of 20 children (M = 4.34 years, SD = .63
years, 13 females and seven males), and 20 adults (the
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same adult observers from Experiment 2) participated in
the experiment.

Stimuli and procedure

Most stimuli and procedures were identical to those in
Experiment 1, with oranges displayed until each observer
responded. The only exceptions were that (1) we only
included the group condition – there were no trials where
a single randomly selected orange was visible in each
tree, and that (2) only six oranges were visible in one of
the two trees, randomly determined to be the left or right
tree.

As in the single condition in Experiment 1, we
generated a full set of eight oranges for each tree even
when only six were displayed in one of them. For the six-
orange tree, we randomly selected six oranges from this
full set and displayed them in six randomly selected
locations out of the eight locations possible. Thus, across
trials, the oranges on the tree with six oranges were less
densely spaced than those on the tree with eight oranges.
Children completed 20 trials from the group condition in
a single block of testing. Adults completed 40 trials
across two blocks of testing.

Results

When the tree with the largest oranges also happened to
be the tree showing the most (eight) oranges, both
children and adults easily discriminated average orange
size across the groups, and were significantly above
chance (children; t[19] = 5.32, p < .01, d = 1.18, adults;
t[19] = 46.9, p < .01, d = 10.49, Figure 4). More
importantly, when the tree with the largest oranges
happened to be the tree with lower numerosity, showing
just six oranges, children and adults still discriminated
the groups above chance (children; t[19] = 2.64, p < .05,
d = .59, adults; t[19] = 8.50, p < .01, d = 1.90, Figure 4).
Average size perception was not completely independent
of numerosity, density, or the amount of orange on
the screen; both children and adults showed reduced
sensitivity for comparing average size when the largest-
sized oranges were in the less numerous group (children;
t[19] = 3.24, p < .01, d = .726, adults; t[19] = 3.14, p < .01,
d = .702, compare left bars with right bars in Figure 4).

The important point here, however, is that children
can still reliably extract ensemble size information even
in the face of strong interference from orthogonal image-
based information. Moreover, there were actually no
numerosity differences in Experiment 1, and though the
density differences in Experiment 3 were larger than
those in Experiment 1, the children still showed ensem-
ble perception. Hence, the ensemble advantage in

Experiment 1 could not have been due to numerosity,
and is unlikely to have been due to density.

Discussion

We showed, for the first time, that ensemble-coding
mechanisms are in place early in childhood. Even at 4–5
years of age, children were able to make precise and
rapid comparisons of average size between groups. A
conservative ideal-observer analysis revealed that chil-
dren integrated information from more than four objects
to estimate which group had larger objects overall. This
value is nearly double the capacity of visual working
memory at 3–5 years of age (Simmering, 2012), arguing
against the possibility that children serially searched and
compared the sizes of just a few random objects. A
control experiment further ruled out this alternative
hypothesis, showing that ensemble size integration pro-
ceeds even when children are unable to engage serial
search. This integration process is independent of
sensitivity to individual objects, and it even allowed
children to extract average size information from groups
despite poor sensitivity for perceiving individual objects.
We also verified that this early summary-statistical
pooling cannot be explained entirely by non-ensemble

Figure 4 Despite baseline differences in sensitivity, children
(black bars) and adults (white bars) were able to indicate which
group had the largest oranges, on average, even when that
group had lower numerosity, density, and contrast (the group
of six oranges, left bars). However, extraction of mean size was
not completely independent of these orthogonal visual cues;
both children and adults correctly indicated which group had
larger oranges more often when that group had higher
numerosity, density, and contrast. * represents p < .05 and **
represents p < .01.
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information, like numerosity, density, or contrast. While
surprisingly sensitive, children pooled information across
fewer objects than adults, indicating that adults’ remark-
able ability to perceive the gist of groups and crowds
develops gradually.
Our investigation provides a novel perspective on the

sophistication of Gestalt perception in childhood. Pre-
vious investigations using hierarchical stimuli and
coherent motion have shown that young children grad-
ually develop sensitivity to global information in pat-
terns and scenes (Dukette & Stiles, 2001; Ellemberg,
Lewis, Dirks, Maurer, Ledgeway, Guillemot & Lepore,
2004; Narasimhan & Giaschi, 2012; Parrish, Giaschi,
Boden & Dougherty, 2005; Porporino, Iarocci, Shore &
Burack, 2004; Prather & Bacon, 1986; Scherf, Berh-
mann, Kimchi & Luna, 2009). Even sensitivity to
collective information, like numerosity, is in place in
infancy (e.g. Zosh et al., 2011). But perceiving groups –
heterogeneous collectives of unique individuals – cannot
occur by accessing global image attributes alone; it
requires an extra step of averaging heterogeneous local
information from many objects to extract a summary
representation. Our findings demonstrate that ensemble
coding allows children to do just this, even with some
independence from numerosity, density, or contrast. Our
results also lay the groundwork for future investigations
to determine whether, like adults, young children’s
developing ensemble-coding mechanisms are flexible
enough to enhance perception of complex social infor-
mation in groups of people, like facial expression or
crowd motion (Haberman & Whitney, 2007; Sweeny
et al., 2012, 2013). They also motivate future investiga-
tion on the relative role and prevalence of ensemble
coding and individual object coding in young children’s
perception.
Perhaps most interestingly, our results are an impor-

tant step in understanding the phenomenology of early
visual experience. Many critical visual functions are still
immature or limited at 4–5 years of age, including acuity
and contrast sensitivity (e.g. Benedek et al., 2003;
Ellemberg et al., 1999; Jeon et al., 2010; Skoczenski &
Norcia, 2002), selective attention (e.g. Johnson, 2002),
attentional resolution in space and time (Farzin et al.,
2010, 2011), visual working memory capacity (Cowan
et al., 2011; Simmering, 2012; Wilson et al., 1987), and
multiple object tracking (O’Hearn, Landau & Hoffman,
2005). Unchecked, these limitations would severely
constrain the capacity of children’s conscious experience,
leaving cohesive groups to instead appear noisy and
fragmented. However, we have shown that compressed
summary representations may allow children to sur-
mount these limitations and regard groups as ensembles.
Just as prosopagnosics compensate for noisy perception

of individual faces by accessing the gist of an entire
crowd (Yamanashi Leib et al., 2012), our findings show
that children have the requisite ensemble mechanisms
that could, in principle, allow them to overcome their
own perceptual limitations, grasping the broader gist of a
scene instead of focusing on individual details.
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