
in addition to being dependent on a characterization of percep-
tion as information processing, such delays (and the need for
delay compensation mechanisms) are also dependent upon a
characterization of perception and action as processes that (pri-
marily) occur with reference to the immediate (i.e., instan-
taneous) present.
From the perspective of ecological psychology, perception-

action primarily occurs with reference to the (impending)
future (Wagman & Malek, in press). In order to successfully
achieve a behavioral goal (e.g., reaching for a cup of coffee or
hitting a thrown ball), perceiver-actors must be able to perceive
whether that (future) behavior is possible, and (if so) they must
be able to perceive how to control their (future) movements
such that this possibility is realized (Shaw & Turvey 1999).
Thus, perception-action is inherently a prospective act (Turvey
1992). If perception-action is inherently prospective, there is
no need for the nervous system to bring the perceiver-actor
“up to speed” because perception-action places awareness
“ahead of the world.”
The prospectivity of perception-action is considered by some

to be one of the fundamental hallmarks of a psychological
being (E. Gibson 1994). From the perspective of ecological psy-
chology, the stimulation variables that support such prospectivity
are not the static and isolated variables of standard physics
(so-called “lower-order” stimulation variables) but, rather, are
the dynamic and relational variables of an ecological physics
(so-called “higher order” stimulation variables) (Turvey & Shaw
1999). For example, a handheld object’s resistance to rotational
acceleration in different directions not only informs a perceiver
about whether that object can be used to achieve a particular
goal (e.g., striking another object) but also about how that
object should be used to do so (Wagman & Carello 2001;
2003). If perception-action is characterized as a prospective
act, then there is no need for delay compensation mechanisms
in perception-action because higher-order relational variables
are sufficient to specify impending states of affairs without the
need for mediating processes.
Delays that are inherent in the sending and receiving of infor-

mation create an explanatory gap in a scientific understanding of
perception and action. However, rather than fill that gap with
specialized delay compensation mechanisms, I propose that per-
ception and action be (re)characterized in a way in which such
delays are an impossibility and the explanatory gap dissolves.
The ecological approach to perception-action provides such a
(re)characterization.

Visuomotor extrapolation
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Abstract: Accurate perception of moving objects would be useful;
accurate visually guided action is crucial. Visual motion across the
scene influences perceived object location and the trajectory of
reaching movements to objects. In this commentary, I propose that the
visual system assigns the position of any object based on the
predominant motion present in the scene, and that this is used to guide
reaching movements to compensate for delays in visuomotor processing.

Nijhawan’s article provides evidence for compensation mechan-
isms in visual perception and visually guided action. Most of this
evidence is drawn from the flash-lag effect, where a single object
moves across the retina. There are several other illusions, some of
which are briefly mentioned in the target article, which might

also support Nijhawan’s position (De Valois & De Valois 1991;
Hess 1904; Matin et al. 1976; Nishida & Johnston 1999; Rama-
chandran & Anstis 1990; Regan & Beverley 1984; Snowden
1998; Whitaker et al. 1999; Whitney & Cavanagh 2000). For a
review of these illusions, see Whitney (2002). The strongest
support for compensation in the perceptual system (e.g., extrapol-
ation) comes from the displacement of stationary edges by motion.
For example, visual motion viewed through a static aperture causes
the aperture to appear shifted in the direction of the motion (De
Valois & De Valois 1991; Ramachandran & Anstis 1990; Regan
& Beverley 1984); the motion aftereffect is accompanied by a con-
current shift in the apparent position of a static test stimulus
(Nishida & Johnston 1999; Snowden 1998; Whitaker et al. 1999);
and, static flashed objects appear shifted in the direction of
nearby motion (Whitney & Cavanagh 2000). Whereas the flash-
lag effect may be due to differential latencies for moving and
flashed objects (Ogmen et al. 2004; Purushothaman et al. 1998;
Whitney & Murakami 1998), these other mislocalizations of static
edges by visual motion cannot be caused by temporal mechanisms
such as differential latencies (Whitney 2002).
Although these mislocalizations of static edges by visual

motion provide the strongest support for perceptual extrapol-
ation (i.e., compensation for neural delays in the perceptual
system), some of these illusions greatly complicate things:
Several papers have shown that flashed objects appear shifted
forward, in a direction consistent with any nearby visual
motion, even when that motion is several degrees away from
the flash. This has been called the “flash-drag” effect or the
“flash-shift” effect (Durant & Johnston 2004; Eagleman & Sej-
nowski 2007; Watanabe et al. 2002; 2003; Whitney 2006;
Whitney & Cavanagh 2000; 2003). Because the flash is not
moving, and it is distantly separated from the moving object, it
does not immediately make sense why the flash should appear
shifted (or extrapolated) in the direction of nearby motion.
This result is somewhat difficult to reconcile with the notion
of compensation for moving object positions, but it is not
entirely incompatible. In fact, this flash-drag effect suggests
that the sort of compensation that Nijhawan describes for a
single moving object extends to all objects, and may be a far
more pervasive and important mechanism than simply allowing
us to perceptually extrapolate a baseball or other moving
object’s position.
In Nijhawan’s article, the primary case that is considered is one

in which a single moving object needs to be perceived or grasped.
This is a relatively rare situation compared to what normally
happens: usually, there is image motion across the entire
retina, not just a single moving object. Normally the world is
physically stationary, and it is we (our eyes, heads, or bodies)
that move around; and it is our movement which generates
retinal image motion. For example, when we reach to any
object, we usually make an eye or head movement during or
just before the reach. In this case, there is retinal motion of the
scene and the target object. On account of delays in visual pro-
cessing, delays in coordinate transformations, and other factors
such as imperfect efference copy signals (Bridgeman
1995) – along with the fact that targets of reaching movements
are coded in eye-centered coordinates (Buneo et al. 2002;
Crawford et al. 2004; Henriques et al. 1998) – our visuomotor
system faces a somewhat similar challenge to the one outlined
by Nijhawan, but on a much grander scale. Because of these
visuomotor delays, we should miss-direct nearly every reaching
movement we make to virtually any object. Every time we
reach toward our coffee cup, we should either hit the cup, knock-
ing it over, or fall short of the cup – all because of sluggish visual
and motor processing.
How does the visuomotor system avoid these errors? In a

recent series of studies, we found that the visuomotor system
samples motion across the visual field and then shifts the trajec-
tory of the hand in the direction of that motion when reaching to
any object in the scene (Whitney & Goodale 2005; Whitney et al.
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2003; 2007). This effect was recently called the manual following
response (Gomi et al. 2006; Saijo et al. 2005) and reveals an adap-
tive mechanism: The visuomotor system uses retinal motion to
gauge movements of the eye and body (probably because it is
as fast or faster than using vestibular or proprioceptive cues),
and then adjusts the trajectory of the reach based on this infor-
mation to improve the accuracy of goal-directed action. In
support of this, when subjects were passively rotated, the pre-
sence of background retinal image motion improved the accuracy
of reaching movements compared to cases in which only static
information, or nothing, was visible (Whitney et al. 2003). The
manual following response is conceptually similar to the “flash-
drag effect” described above, and it suggests that the visual and
visuomotor systems use retinal image motion (the kind generated
every time we move our eyes) to update/extrapolate/shift the
representations of object position (causing objects to appear
shifted in position) – and this allows us to guide our hand
more accurately than would otherwise be possible.
This visuomotor extrapolation model has the advantage that it

accounts for several psychophysical findings that are discrepant
with the perceptual extrapolation model; and it also has the
advantage that it explains accurate visuomotor behavior under
the most common circumstances – where the world is stationary
and we are moving.

Compensation for time delays is better
achieved in time than in space
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Abstract:Mechanisms of visual prediction based on spatial extrapolation
work only for targets moving at constant speed, but do not easily
accommodate accelerating or decelerating motion. We argue that
mechanisms based on temporal extrapolation deal with both uniform
and non-uniform motion. We provide behavioural examples from
interception of falling objects and suggest possible neurophysiological
substrates of time extrapolation.

Nijhawan makes a clear case for the need to compensate for
delays arising from processing and transmission times. The evi-
dence for compensation in perceptual decision and visual aware-
ness appears somewhat controversial (Eagleman & Sejnowski
2000; Krekelberg & Lappe 2001), but the evidence for compen-
sation for motor reactions to a rapidly changing sensory stimulus
is uncontroversial. Typical visuomotor delays in ballistic intercep-
tion of fast targets (such as in catching or hitting in ball games)
are about 200 msec – at least an order of magnitude longer
than the temporal accuracy required for interception (about
+10 msec). Unless the nervous system has built-in mechanisms
to compensate for such delays, the interception program would
be based on obsolete visual information about target motion,
and, as a consequence, the target would be badly missed.
Nijhawan proposes a mechanism for neural compensation of

delays that is based on a spatial extrapolation linearly related to
the time delay. According to his hypothesis, visual prediction
would be concerned primarily with horizontal processes, which
transmit neural information between two neighbouring retinoto-
pic sites. The speed of neural transmission and the distance
between neighbouring neurons along the horizontal direction
would jointly determine the amount of spatial and temporal
extrapolation. Another mechanism could consist in a shift of
the receptive field in response to moving stimuli. Sundberg
et al. (2006) found that neurons in monkey area V4 exhibit

such a shift in response to a particular type of moving stimuli.
The direction of the receptive field shift was opposite to the
direction of target motion, as if the cell had been recruited by
a wave of activity preceding the target. Ferrera and Barborica
(2006) argued that a moving target would leave a trail of refrac-
tory neurons in its wake so that spiking activity would be shifted
toward the leading edge.
Interestingly, mechanisms of visual prediction based on

spatial extrapolation, such as those mentioned above, work
only for targets moving at constant speed (uniform motion),
because the spatial shifts co-vary with the time samples in a
fixed manner. Most targets, however, accelerate or decelerate
to a variable extent. Let us consider a very common situa-
tion – that of motion affected by Earth’s gravity, such as free-
fall, ballistic, pendulum, or wave motion. Although all objects
are accelerated downward by gravity at the same rate, the
corresponding acceleration of the retinal image is not at all
constant, being inversely related to the apparent viewing dis-
tance of the object. The question then is how the central
nervous system (CNS) compensates for delays in the case of
accelerating or decelerating motion. Here we show that tem-
poral extrapolation rather than spatial extrapolation can more
easily do the job.
Figure 1A depicts space–time plots similar to those of

Figures 3 and 4 of Nijhawan, but for an object moving at con-
stant acceleration (when the spatial variable decreases from
right to left) or deceleration (when the spatial variable increases
from left to right). The dashed curve depicts the physical trajec-
tory, and the dotted curve depicts the corresponding trajectory
“seen” by a neuron with a fixed visual delay. Clearly, the spatial
shifts required to compensate for the visual delay (solid line
segments connecting the two curves) are not constant
anymore, as they were in the spatial extrapolation scheme pro-
posed by Nijhawan.
In theory, a first-order model might be used to approximate a

second-order motion. One such model is provided by the tau
function, tau ¼ x(t)/v(t), where x(t) is the spatial position of the
target and v(t) is the corresponding velocity (Lee 1976).
However, it can be shown that, in case of free-fall motion from
relatively short drop heights, such an approximation would
imply significant temporal errors in interception (.50 msec),
corresponding to the difference between the time-to-contact pre-
dicted by tau and the actual time-to-contact of the ball acceler-
ated by gravity (Zago & Lacquaniti 2005). In fact, we know
that unless taken by surprise, people can easily intercept
targets descending along the vertical accelerated by gravity (Lac-
quaniti & Maioli 1989; Zago et al. 2004); they generally intercept

Figure 1 (Zago & Lacquaniti). Figure depicts space-time plots
similar to those of Figures 3 and 4 in the target article, but for an
object moving at constant acceleration (when the spatial variable
decreases from right to left) or deceleration (when the spatial
variable increases from left to right). The dashed curve depicts
the physical trajectory and the dotted curve depicts the
corresponding trajectory “seen” by a neuron with a fixed visual
delay.
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a mechanism would have the necessary speed to produce
the interception of accelerating objects, as has been
demonstrated by Lacquaniti and colleagues. A time-extra-
polation could supplement the task of prediction, and
work cooperatively with space-extrapolation to yield a
more robust system than each type of extrapolation
alone would.

Cunningham suggests that in addition to spatial com-
pensation for delays, there should also be temporal com-
pensation; and in addition to compensation for delays for
continuous events, there should also be compensation for
discrete events. There are perhaps two ways of describing
temporal compensation. One is similar to whatz Zago &
Lacquaniti might call time-extrapolation. This may be
called absolute temporal compensation, as it affects delays
between a physical event and its registration. The other is
relative temporal compensation, where the nervous system
actively coordinates sensory signals to compensate for tem-
poral asynchronies between modalities (see commentary by
Cutting).

Relative temporal compensation is what Cunningham
and colleagues have shown in their interesting exper-
iments. Let us consider absolute temporal compensation
further. First, there is a form of absolute temporal com-
pensation, as demonstrated by experiments on finger
tapping to auditory tones. Within limits, human subjects
can predict repetitive discrete tones and put their finger
taps just in advance of the tones (Mates et al. 1994).
This is a good example of where the sensorimotor system
must have information about the actual time of an external
event. But can absolute temporal compensation occur for
perception (as opposed to behavior such as finger taps)?
Can the visual system generate the percepts of repetitive
flashes, for example, simultaneously with the actual
flashes? The answer would appear to be no, and this is
where spatial and temporal compensations differ. The
claim of spatial compensation is that it can put the
percept of the moving object closer to (or even ahead of)
the actual position of the moving object. In contrast, tem-
poral compensation cannot, it seems, put the perceptual
event close to the time of the actual event.

I fully endorse the amendment suggested by Cunning-
ham that: “The goal of visual prediction is to use priors
acquired from both previous experience and the currently
unfolding visual stimulus to create a perceived state of the
world that matches, as far as possible, the actual state of
the world.”

R6.7. Mental extrapolation and (not “or”) visual
extrapolation

Kerzel & Müsseler suggest that sensorimotor prediction
and mental extrapolation, as opposed to visual extrapol-
ation, can overcome perceptual latencies. There is no
doubt that sensorimotor prediction is an important, and
highly flexible, contributor to successful behavioral acts.
The role of mental extrapolation in the context of flash-
lag effect is, however, not as clear as these commentators
propose. Kerzel & Müsseler claim that the missing predic-
tive-overshoot in the flash-terminated condition opposes
the visual extrapolation account, and they invoke mental
extrapolation in explaining the forward-shift of fading
moving objects (Maus & Nijhawan 2006). However, it is
not clear how mental extrapolation escapes this very

criticism. Why does mental extrapolation not lead to an
overshoot in the flash-terminated condition?

Mental extrapolation falls in the general category of
phenomena such as mental imagery and mental rotation.
Researchers have investigated the neural basis of mental
imagery. One of the key findings is that mental imagery
tasks engage the primary visual cortex (Kosslyn &
Sussman 1994). In addition, Kosslyn and colleagues have
found a number of similarities between mental imagery
and visual perception, such as the topographic nature of
both representations (Kosslyn et al. 1995). Thus, the exist-
ence of mental extrapolation would predict the existence
of visual extrapolation. Kerzel & Müsseler’s proposal
that mental extrapolation exists but visual extrapolation
does not is unparsimonious.

I claim that the task of mental extrapolation is not to
solve the problem of neural conduction delays, but
rather, it is to determine when a moving object, occluded
by another object, will reappear (Wexler & Klam 2001). In
the case of continuous sensory input from a moving object,
the task of mental extrapolation is to determine the
object’s future position. The task of visual extrapolation
is to use sensory input to determine the object’s current
position (after compensating for visual conduction
delays). In past studies, Kerzel and colleagues have used
either probe stimuli presented after a retention interval,
or pointing movements, and so in effect asked for the
remembered final position of the moving target. In flash-
lag experiments, or in the task used by Maus and Nijhawan
(2006), participants make an online perceptual judgment
comparing the position of the moving target to a flash or
to a static probe. Although obviously the observer’s
response is given after the visual offset, the judgment is
based on simultaneously visible stimuli. It is likely that
the two experimental methods differentially engage
mental and perceptual extrapolation. In this context, it is
interesting to note that the forward-shift effect of the
fading moving object observed by Maus and Nijhawan
(2006) is 175 msec, which is a much larger shift than the
typical flash-lag effect of 80 msec. It is possible that this
is a cumulative effect of both visual and mental
extrapolation.
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