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Abstract

Inspired by human vision, we propose a new periphery-

fovea multi-resolution driving model that predicts vehicle

speed from dash camera videos. The peripheral vision

module of the model processes the full video frames in

low resolution with large receptive fields. Its foveal vi-

sion module selects sub-regions and uses high-resolution

input from those regions to improve its driving perfor-

mance. We train the fovea selection module with su-

pervision from driver gaze. We show that adding high-

resolution input from predicted human driver gaze locations

significantly improves the driving accuracy of the model.

Our periphery-fovea multi-resolution model outperforms

a uni-resolution periphery-only model that has the same

amount of floating-point operations. More importantly,

we demonstrate that our driving model achieves a signifi-

cantly higher performance gain in pedestrian-involved crit-

ical situations than in other non-critical situations. Our

code is publicly available at https://github.com/

pascalxia/periphery_fovea_driving.

1. Introduction

Vision-based deep autonomous driving models have

shown promising results recently [13, 14, 4, 26]. How-

ever, their performance is still far behind humans. An im-

portant aspect of human vision that distinguishes it from

existing autonomous driving models is its multi-resolution

property. Human visual system has distinct foveal and pe-

ripheral structures that carry localized high-resolution infor-

mation and long-range low-resolution information, respec-

tively. The human fovea covers approximately two degrees

of the central visual field and our vision within this area is

featured by high spatial acuity and small receptive fields of

visual neurons (e.g., ganglian cells, LGN cells, visual corti-

cal cells); the rest of our visual field, i.e., the periphery, has

low spatial acuity and large neural receptive fields. While

peripheral vision constantly covers a large space, eye move-
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Figure 1: Our model uses the low-resolution full video

frame as the peripheral visual input to predict human driver

gaze and gets high-resolution image patches from the pre-

dicted gaze locations. It then combines the peripheral input

and foveal input to predict the vehicle speed at high accu-

racy and high efficiency.

ments, guided by visual attention, direct the fovea to gather

high-resolution information from salient/important regions.

One advantage of this design is its efficiency: the peripheral

vision efficiently processes long-range structures in low res-

olution with large receptive fields and the localized foveal

vision dedicates resources to particularly salient or impor-

tant regions. Driving scenes typically contain both impor-

tant long-range structures (e.g., curving roads and crossing)

and localized regions with critical details (e.g., pedestrians’

gaze and traffic sign contents). Therefore, inspired by the

human vision, we propose a new periphery-fovea multi-

resolution driving model and show that it achieves higher

driving accuracy and better efficiency.

The first challenge in designing this model is to effec-

tively combine the global low-resolution peripheral vision

and the local high-resolution foveal vision that dynamically

scans across the frame. We propose two ways to merge the

two visions by either using a combined peripheral-foveal
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planner or two independent visual planners. We will com-

pare their performances and discuss the differences.

The second challenge is how to dynamically guide foveal

vision to the critical locations. The foveal location selection

is a non-differentiable process. A potential solution is to use

reinforcement learning, but it could take a great deal of data

and training. We choose a different approach: guiding the

foveal vision to where human drivers would gaze. Recently

proposed large driver gaze datasets [25, 2] and driver gaze

prediction models [25, 18, 19] allow us to predict human

gaze for our videos. However, it has not been tested whether

predicted human gaze or even ground-truth human gaze can

benefit autonomous driving models. Note that in order to be

highly efficient, the human gaze can only be predicted us-

ing low-resolution input images, which makes the question

even more complex.

A unique property of human gaze is that it reveals the

relative urgency of locations and objects of potential inter-

est. Different moments during driving and different road

agents are not equally urgent. Human drivers look at the

most critical regions when emergencies arise [12]. Incor-

porating human gaze into a driving model may not only in-

crease its average performance but also bring even higher

performance gain at critical moments. We use a driving

video dataset that has human-annotated explanations about

the driver’s actions. We demonstrate that our driving model

guided by human gaze shows even higher performance gain

in the cases where reactions to pedestrians are necessary

than in other presumably less critical cases.

In summary, we designed a novel periphery-fovea multi-

resolution driving model that efficiently processes both

long-range visual structures as well as localized and de-

tailed visual information. We also demonstrated the use-

fulness of guiding this driving model by human driver at-

tention. Our model showed efficiency superiority, good in-

terpretability, and strong robustness to critical driving situ-

ations involving pedestrians.

2. Related work

End-to-End Learning for Self-driving Vehicles. Recent

successes [4, 26, 13] suggest that a driving policy can be

successfully learned by neural networks with the super-

vision of observation (e.g. raw images)-action (e.g. steer-

ing) pairs collected from human demonstration. Bojarski et

al. [4] trained a deep neural network to map a dashcam im-

age to steering controls, while Xu et al. [26] utilized a di-

lated deep neural network to predict a vehicle’s discretized

future motions. Hecker et al. [11] explored an end-to-

end driving model that consists of a surround-view multi-

camera system, a route planner, and a CAN bus reader.

Codevilla et al. [6] proposed a goal-conditioned end-to-end

driving model to make the system responsive to high-level

navigational commands (i.e. turn left/right, pass the inter-

section, follow the road). To further reduce the complexity,

there is also a growing interest in end-to-mid [28] and mid-

to-mid approaches [3].

Despite the encouraging successes in some specific driv-

ing scenarios, learning how to drive in general in urban ar-

eas is still challenging. We suggest two major factors that

limit the performance of end-to-end driving controllers. (i)

Low-resolution inputs: these neural controllers usually take

in visual data in a low spatial resolution to reduce computa-

tional burdens. However, high-resolution inputs are neces-

sary for recognizing objects at far distances and interpreting

complex visual cues such as pedestrians’ facial expressions.

(ii) Uni-resolution and the lack of a separate decoder ded-

icated to salient regions: driving scenes are often highly

redundant, and human drivers use low-resolution periph-

eral vision to determine the salient areas for high-resolution

foveal vision to process. However, the neural controllers

process the entire input frame in one resolution with a sin-

gle decoder. This design leads to a waste of computational

resources in non-salient regions and/or suboptimal perfor-

mance in salient areas.

In this work, we propose an end-to-end driving model

that uses periphery-foveal multi-resolution inputs. A

periphery-fovea design has been shown to be effective for

predicting human gazes [24]. As shown in Figure 1, our

model follows the landmark model by Bojarski et al. [4]

– a deep model that predicts control command only from

(low-resolution) raw images, but, in addition, our model

jointly encodes high-resolution image patches that are ex-

tracted under the supervision of our driver gaze prediction

module.

Incorporating Human Visual Attention. Attention mech-

anisms have shown promising results in various computer

vision tasks, e.g., image caption generation [27], visual

question answering (VQA) [30], and image generation [9].

Most of these models do not supervise the generated atten-

tion by human attention. Recently, Das et al. [7] has shown

that explicitly supervising the attention of VQA models by

human attention improves the models’ VQA performance.

Zhang et al. [29] has trained a network that predicts hu-

man attention for Altari games and shown that incorporat-

ing the predicted human attention into the policy network

significantly improves the action prediction accuracy. Li et

al. [17] proposed a deep model that jointly recognizing what

a person is doing and estimating their gaze in First Person

Vision.

However, to the best of our knowledge, incorporating hu-

man visual attention in driving tasks has not yet been ex-

plored. Human-demonstrated vehicle control, which serves

as the supervision signal of the conventional end-to-end

driving models, is very sparse. The sparsity of this super-

vision signal limits the models’ semantic understanding of
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Figure 2: Our model consists of four parts: (1) the peripheral visual encoder, which extracts high-level convolutional visual

features; (2) the human attention prediction module, which learns the behavior of human attention as a supervised learner

over image-gaze pairs collected from humans; (3) the foveal visual encoder, which selects fovea locations, crops the high-

resolution fovea image patches and encodes them into visual features; (4) the peripheral-foveal planner, which combines the

peripheral and foveal visual features and predicts a low-level control command, i.e., a vehicle’s speed.

the scene. The visual cues that the models can appropriately

react to are often limited to the simple ones that frequently

lead to consistent control actions (e.g., stop signs and in-

tersections). The models often misinterpret complex and

vital cues such as pedestrians, which require deep seman-

tic understanding. In this work, we explore whether human

visual attention as additional supervision signals can poten-

tially improve the models’ semantic understanding of the

scenes (and provide better control prediction performance).

Predicting Driver Attention. Human driver attention

has been successfully modeled with probabilistic modeling

techniques [12, 10] and has been demonstrated to be crit-

ical for the cognitive and social challenges in driving (e.g.

communicating with pedestrians) [20, 21]. Recently, deep

driver attention prediction models [25, 18, 19] have been

proposed. The input of these models is video recorded by

cameras mounted on the car. The output is an attention map

indicating the driver’s gaze probability distribution over the

camera frame. These models are trained using large-scale

driver attention datasets [25, 2] collected with eye trackers.

In this work, we follow the model by Xia et al. [25] to pre-

dict the human driver gaze.

3. Periphery-Foveal Multi-Resolution Model

Similar to conventional end-to-end driving models, our

model takes dash-camera video frames as input and outputs

a control signal. We chose to predict the continuous value

of the speed in one second in the future. The unique design

of our model is that it mimics the key aspect of the human

vision system: the peripheral and the foveal systems. The

peripheral vision system of our model processes the whole

video frames in low resolution to efficiently captures the

long-range scene structures. The foveal vision system pro-

cesses salient regions in high resolution. Visual features

from both peripheral and foveal systems are then combined

to predict the vehicle speed.

Therefore, as we summarized in Figure 2, our model

consists of four parts: (1) the peripheral visual encoder,

which extracts high-level convolutional visual features; (2)

the human attention prediction module, which learns the

behavior of human attention as a supervised learner over

image-gaze pairs collected from humans; (3) the foveal vi-

sual encoder, which selects fovea locations, crops the high-

resolution fovea image patches and extracts visual features

from the high-resolution image patches; (4) the peripheral-

foveal planner, which combines the peripheral and foveal

visual features and predicts a low-level control command,

i.e. a vehicle’s speed.

3.1. Peripheral Visual Encoder

The low-resolution image inputs IL are fed to a convo-

lutional network, which outputs features Xt that capture

a high-level visual representation at each timestep t. This

feature Xt ∈ Rw×h×d contains a set of d-dimensional

latent vectors over the spatial dimension, i.e. Xt =
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Figure 3: Examples of different approaches of foveal region selection. We present the original input video frame and the

predicted human attention heat map in the left column. Our baseline model only uses peripheral vision (without fovea). We

studied four different types of foveal vision selection: random, central, top-2, and sampling. Top-2 and sampled foveae are

chosen according to the predicted human attention. For better visualization, we present orange boxes to indicate the foveal

regions.

{xt,1,xt,2, . . . ,xt,l}, where l = w × h and xt,i ∈ Rd.

This feature Xt is then consumed both by the human atten-

tion prediction module (Section 3.2) and by the peripheral-

foveal planner (Section 3.4).

3.2. Human Attention Prediction

Our model is trained to predict multi-focal human driver

attention At ∈ Rw×h conditioned on visual features Xt,

i.e. αt = fattn(Xt). To implement the function fattn, we

follow the model by Xia et al. [25]. We use three addi-

tional convolutional layers with 1 × 1 kernels and a sin-

gle layer of convolutional LSTM (called AttnLSTM). Note

that we use a dropout layer after each convolutional layers

to avoid over-fitting. Our AttnLSTM has a kernel size of

3 × 3 followed by a Gaussian smoothing layer (σ is set to

1.5). A softmax layer is used to yield normalized {αt,i} for

i = {1, 2, . . . , l}, where 0 ≤ αt,i ≤ 1 and
∑

i αt,i = 1. We

use the cross-entropy loss to train our human driver atten-

tion prediction model as follows:

Latt = H(αt, α
gt
t ) (1)

where H is the cross entropy function and the superscript gt

indicates ground-truth.

3.3. Foveal Visual Encoder

Our model chooses k independent fovea locations for

each input image. Given the predicted human attention αt

as a prior probability distribution, we sampled k fovea loca-

tions as follows:

pt,i =
exp (logαt,i/T )∑
j exp (logαt,j/T )

(2)

where pt,i for i = {1, 2, . . . , l} is the probability of the

i-th spatial location being selected as the fovea location

and T is the temperature factor. A temperature factor of

1 means sampling faithfully following the predicted prob-

abilistic distribution of multi-focal gaze. A higher temper-

ature means sampling more uniformly, while a lower tem-

perature means sampling more from the pixel that has the

highest human attention intensity.

As shown in Figure 3, we also explore three different

ways to select these fovea locations as follows. (a) Ran-

dom Fovea where we randomly choose k fovea locations.

(b) Central Fovea where we always select k fovea locations

from the center of the frame. (c) Top-k Fovea where we

choose locations that have the highest attention intensities

in each predicted w × h-pixel human attention map.

Encoding. An image patch centered at each selected fovea

location is cropped out from the 720 × 1280-pixel high-

resolution frame image. The size of this image patch, i.e.,

fovea size, can potentially be dynamically determined based

on clustering of the predicted attention map. However, in

order to keep the efficiency of the model and to focus on the

proof of the concept, we chose a fixed fovea size of 240 ×
240 pixels. The foveal image patches are then downsized

to 185 × 185 pixels to fit the receptive fields and strides of

the following encoder network. The raw pixel values are

subtracted by a global mean as [16] before being passed

to the encoder network. The foveal visual encoder has the

same structure as the peripheral visual encoder except for

the kernel sizes and strides of the additional convolutional

layers.
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3.4. PeripheralFoveal Planner

The peripheral-foveal planner further processes the pe-

ripheral and foveal features to predict speed for the fu-

ture. It first creates a foveal feature map Yt =
{yt,1,yt,2, . . . ,yt,l}, where l = w×h and yt,i ∈ Rd. This

foveal feature map is initialized with zeros. Each foveal im-

age patch is encoded into a 3 × 3 × d feature patch by the

foveal feature encoder. These foveal feature patches are in-

serted into the foveal feature map at locations correspond-

ing to the foveal locations. In the cases where the feature

patches of two foveae overlap, the maximum of each pair

of overlapping feature values is kept. Then the peripheral

feature maps (Xt) and foveal feature maps (Yt) are con-

catenated along the semantic dimension to form the com-

bined feature maps (Zt = [Xt;Yt]). The combined fea-

ture maps are then processed by an additional ConvLSTM

layer (called ControlLSTM) and four fully-connected layers

to predict a continuous value for the vehicle speed.

Loss Function. We minimize the difference between

human-demonstrated and predicted control (i.e. speed) to

train our peripheral-foveal planner. Concretely, we mini-

mize the following loss function L to train our model:

L =
∑

t

|v(t)− v̂(t)| (3)

where v(t) and v̂(t) are the predicted speed and the human

demonstrated speed, respectively.

4. Experiments

In this section, we first present the datasets we used and

our training and evaluation details. Then, we make quan-

titative and qualitative analyses of our proposed periphery-

fovea multi-resolution driving model.

4.1. Datasets

BDD-X. We used the Berkeley DeepDrive eXplanation

(BDD-X) dataset [14] to train and evaluate the driving mod-

els. This dataset contains human-demonstrated dashboard

videos of urban driving scenes in various weather and light-

ing conditions. The dataset also provides a set of time-

stamped sensor measurements, e.g., vehicles velocity and

course, and time-stamped human annotations for vehicle

action descriptions and justifications. The training set con-

tains 5,588 videos and the validation and testing sets contain

698 videos. Most videos are 40 seconds long.

DR(eye)VE. We also evaluated our driving models on

the DR(eye)VE dataset [2] to test the generalizability of

the models. The DR(eye)VE dataset contains human-

demonstrated dashboard videos of driving collected in a bal-

anced way across various urban areas (downtown, country-

side and highway), different times of the day (daytime and
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Figure 4: Testing errors of the medium-resolution

periphery-only model and our model calculated using

different lengths of testing videos of the BDD-X and

DR(eye)VE datasets. The two models have the same

amount of FLOPs at inference time, but our model consis-

tently showed greater driving accuracy than the competing

model.

night), and multiple weather conditions (sunny, cloudy and

rainy).

BDD-A. We used the Berkeley DeepDrive Attention (BDD-

A) dataset [25] to train the human attention prediction

module. The BDD-A dataset contains driving videos col-

lected in the same way as the BDD-X dataset. (But the

two datasets do not share the same videos.) The BDD-A

dataset also provides human attention map annotations. The

human attention maps were collected by averaging multi-

ple drivers’ eye movements while they were watching the

videos and performing a driver instructor task [25]. The at-

tention maps highlight where human drivers need to gaze

when making driving decisions in the particular situations.

The BDD-A dataset contains 926, 200 and 303 videos in

the training, validation and testing sets, respectively. Each

video is approximately 10-second-long.

4.2. Training and Evaluation Details

To obtain the low-resolution image input, we sample the

video frames at 10Hz and downsize them from 720× 1280
pixels to 72× 128 pixels by applying bilinear interpolation.

Each image is then normalized by subtracting the global

mean from the raw pixels [16].

Following [25], we use the identical ConvNet base (i.e.

AlexNet) where each of the additional convolutional layers

is followed by Batch Normalization and Dropout. This pro-

vides a convolutional feature map of size 3× 7× 256. The

AlexNet modules in the driving models were pre-trained
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Table 1: We compared the vehicle control (i.e. speed) pre-

diction performance of four different types of vision sys-

tems. We evaluated their performance in terms of the mean

absolute error (MAE), the root-mean-square error (RMSE),

and the correlation coefficient (Corr).

Model
BDD-X (km/h) DR(eye)VE (km/h)

MAE ↓ RMSE ↓ Corr ↑ MAE ↓ RMSE ↓ Corr ↑

Peripheral vision only (no fovea, baseline) 9.6 14.4 .594 14.3 18.8 .752

w/ Random fovea 11.2 15.4 .520 13.8 17.8 .789

w/ Central fovea 9.4 13.9 .592 13.1 16.8 .816

w/ Human-guided fovea (ours) 9.1 13.4 .596 12.6 16.4 .823

on ImageNet and frozen afterwards. The human atten-

tion prediction module was trained following [25]. Other

parts of the driving models were trained end-to-end from

scratch. We used the Adam optimization algorithm [15],

dropout [22] at a drop rate of 0.2, and the Xavier initializa-

tion [8]. The training of our model took approximately one

day on one NVIDIA GeForce GTX 1080 GPU. Our imple-

mentation is based on Tensorflow [1].

Evaluation. To quantitatively evaluate the speed predic-

tion performance, we used three metrics: (i) the mean abso-

lute error (MAE), (ii) the root-mean-square error (RMSE),

and (iii) the correlation coefficient (Corr). These metrics

compare the prediction against the ground-truth speed com-

mands to evaluate the performances of the driving models.

At inference time, the longest single video duration that

our GPU memory could process was 30 seconds. There-

fore, during testing, unless otherwise stated, the original

testing videos that were longer than 30 seconds were di-

vided into 30-second-long segments and the remaining seg-

ments. Moreover, since human attention prediction is not

the main goal of our model and one of our datasets does not

contain human attention ground-truth, the evaluation of the

predicted human attention maps is out of the scope of the

current work.

4.3. Multiresolution vs. Uniresolution

We first compare the performance of our periphery-fovea

multi-resolution model with an uni-resolution periphery-

only design, i.e., allocating all the resources to increase

the resolution of the periphery vision without adding foveal

vision. The number of floating-point operations (FLOPs)

of our multi-resolution model for processing every video

frame at inference is 3.4 billion. A medium-resolution

periphery-only model that matches the same amount of

FLOPs has a periphery input resolution size of 209 × 371
pixels. The structure of this model was the same as the

periphery branch of our model except one change due to

the enlarged input resolution. The periphery encoder of our

model output feature maps of 3 pixels and then upsampled

them to 9×16 pixels. The periphery encoder of the medium-

resolution model output feature maps of 12× 22 pixels and

then downsampled them to 9 × 16 pixels. We tested this

medium-resolution periphery-only (medium-res periphery)

model against our periphery-fovea multi-resolution model.

For a thorough analysis, we did the comparison for multiple

rounds. In each round we cut the test videos into segments

no longer than a certain length and tested the models using

those segments. We tried segment lengths from two sec-

onds up to 30 seconds (the longest single segment that we

could process with our GPU memory). The prediction er-

rors of the two models measured in MAE are summarized in

Figure 4. The prediction error of the medium-res periphery

model kept increasing with increasing video length, while

the prediction error of our model stayed more stable. Our

model showed smaller prediction errors than the medium-

res periphery model with all video lengths except with 2

seconds the two models showed the same error. Over all, the

result suggested that the periphery-fovea multi-resolution

design would achieve better driving accuracy than a uni-

resolution periphery-only design given the same amount of

computation.

4.4. Effect of Incorporating Human Attention
guided Foveal Vision

To test the effect of the foveal vision guided by hu-

man attention, we compared our peripheral-foveal multi-

resolution driving model against three baseline models (Fig-

ure 3). The first baseline model (no fovea) uses only low-

resolution full video frames as input and has only the pe-

ripheral branch of the driving model we introduced. The

second baseline model (random fovea) select fovea loca-

tions randomly over the video frame. The third base-

line model (central fovea) always assigns its two foveae to

the central 240 × 480 region of the frame. The central-

fovea model is a strong baseline because the central regions

mostly cover the area the vehicle is driving into and hu-

man drivers mostly localize their attention around the center

of the road. We compared these baseline models with our

peripheral-foveal multi-resolution driving model guided by

human attention (human-guided fovea). The fovea locations

were selected using the top-2 method. The mean testing er-

rors of these models are summarized in Table 1. Our driv-

ing model outperformed all of the baseline models. This

result suggests that the foveal vision guided by predicted

human attention can effectively improve the model’s accu-

racy. Note that the random-fovea model performed worse

than the no-fovea model. This suggests that adding high-

resolution foveal input would not necessarily improve the

model. If fovea locations are not selected in a proper way,

it may add distracting information to the driving model.
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Figure 5: Examples showing how our model and the no-fovea model react in pedestrian-involved situations. From left to

right: original high-resolution frame images, low-resolution frame images used as peripheral vision input, predicted human

attention maps, selected high-resolution image patches as foveal vision input, and ground-truth and predicted speed curves

of the pedestrian-involved events. The vertical dashed lines in the speed curve graphs indicate the moments depicted by the

frame images. The ground-truth and predicted speed curves of the entire videos of these examples are in the supplementary

materials. The textual action and justification human annotations are displayed below the images of each example.

Table 2: Mean testing errors of our driving model using

different fovea selection methods.

Fovea selection Temperature Likelihood Overlap MAE RMSE Corr

Top-2 fovea - 0.48 92% 9.1 13.4 .596

Sampled fovea 2.0 0.18 11% 8.7 12.9 .621

Sampled fovea 0.5 0.46 55% 8.6 12.7 .622

Sampled fovea 1.0 0.37 32% 8.5 12.4 .626

4.5. Top2 vs. Sampled Fovea

Human attention can be multi-focus [5], especially dur-

ing driving when the driver needs to react to multiple road

agents or objects. A concern about using the top-2 method

to select fovea locations is that it may select adjacent loca-

tions around a single focus in one frame and also select lo-

cations from the same focus in the next frames. To address

this concern, we brought a sampling method to select fovea

locations (described in the Model section). It samples fovea

locations according to the predicted human attention prob-

ability distribution and modulated by a temperature factor

(see Figure 3). We tested our driving model using both the

top-2 method and the sampling method and experimented

with three different temperature factor values for the sam-

pling method. To quantify to how much extend the fovea

selection followed the predicted human attention, we calcu-

lated the likelihood of the selected foveae. To quantify the

redundancy in fovea location selection, we calculated the

overlap ratio between the fovea patches of adjacent frames.

The results are summarized in Table 2. The results showed

the trend that a balance between high likelihood and low

overlap would result in the optimal performance. In our ex-

periments, sampling completely following the predicted hu-

man attention distribution (i.e., temperature factor T = 1)

showed the best prediction accuracy.

4.6. Combined vs. Dual Peripheralfoveal Planner

The previously presented design of our peripheral-foveal

planner combines peripheral and foveal features to process

with one ConvLSTM network. We call this design the com-
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Figure 6: Testing errors of the no-fovea baseline model and

our model at pedestrian-involved moments and other mo-

ments when the vehicle speed is under 10m/s (36 km/h).

Statistical significance levels given by permutation tests are

noted in the graph.

Table 3: Mean testing errors of our driving models using

either combined or dual peripheral-foveal planner.

Model MAE RMSE Corr

Ours w/ Dual Peripheral-foveal Planner 9.4 13.2 .602

Ours w/ Combined Peripheral-foveal Planner 8.5 12.4 .626

bined peripheral-foveal planner design. In this design, the

peripheral and foveal feature maps need to have the same

resolution in order to be concatenated along the semantic

dimension (9 × 16 in our case). This constraint determines

that the feature patch corresponding to one foveal input im-

age patch cannot be bigger than 3× 3 pixels.

To break this constraint, we experimented with a dif-

ferent design, i.e., the dual peripheral-foveal planner struc-

ture. It bypasses the uni-resolution constraint by processing

the peripheral and foveal features with separate ConvLSTM

networks. It generates a feature patch of 14 × 14 pixels

for each foveal input image patch. In stead of inserting the

foveal feature patch into a bigger grid that corresponded to

the full video frame, it adds the positional encoding [23]

of the fovea location into the fovea features to preserve the

fovea location information.

We tested the dual planner and compared it against the

combined planner. The dual planner did not show higher ac-

curacy than the combined planner (Table 3). We think this

is because the combined planner also have its own unique

advantages. In the combined planner design, the fovea lo-

cation is clearly indicated by the location of the features in

the feature map. Besides, the foveal features and peripheral

features that are calculated from the same frame region are

aligned into one vector in the combined feature maps. So

the kernel of the upcoming ConvLSTM network can pro-

cess the peripheral and foveal features of the same region

jointly.

4.7. Larger Performance Gain in Pedestrian
involved Critical Situations

The textual annotations of the BDD-X dataset allowed

us to identify the critical situations where the driver had to

react to pedestrians. These pedestrian-involved situations

were defined as the video segments where the justification

annotations contained the word “pedestrian”, “person” or

“people”. We tested whether our model showed a stronger

performance gain in the pedestrian-involved situations than

in the remaining situations which should be on average less

critical.

We calculated the mean prediction errors of our model

and the no-fovea model separately for the pedestrian-

involved video segments and the remaining segments in the

test set. Note that the prediction error correlates with the ve-

hicle speed and the pedestrian-involved segments only cov-

ered a speed range up to 10m/s (36 km/h). For a fair com-

parison, we excluded the frames in which the vehicle speed

was higher than 10m/s from this analysis. In order to de-

termine the statistical significance levels, we ran permuta-

tion tests that could address the concern that the frames of a

video are not independent.

The results are summarized in Figure 6. Our

model showed significant performance gains in both the

pedestrian-involved situations and the remaining situations

(p-value < 0.001). More importantly, the gain achieved in

the pedestrian-involved situations was significantly bigger

than the gain in the remaining situations (p-value = 0.002).

Some examples are demonstrated in Figure 5. The videos

of those examples are in the supplementary materials.

5. Conclusion

We have proposed a new periphery-fovea multi-

resolution driving model that combines global low-

resolution visual input and local high-resolution visual in-

put. We have shown that guiding the foveal vision mod-

ule by predicted human gaze significantly improves driv-

ing accuracy with high efficiency. The performance gain is

even more significant in pedestrian-involved critical situa-

tions than other average driving situations. Our approach

has demonstrated a promising avenue to incorporate human

attention into autonomous driving models to handle crucial

situations and to enhance the interpretability of the model’s

decisions.
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