
Journal of Perceptual Imaging R© 5: 000502-1–000502-15, 2022.
c© Society for Imaging Science and Technology 2022

Controllable Medical Image Generation via GAN
Zhihang Ren1,2, Stella X. Yu1,2, David Whitney1,2,3,4

1Vision Science Graduate Group, University of California, Berkeley, CA 94720, United States of America; 2International Computer
Science Institute, Berkeley, CA 94720, United States of America; 3Department of Psychology, University of California, Berkeley, CA

94720, United States of America; 4Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720,
United States of America

E-mail: peter.zhren@berkeley.edu

Abstract. Medical image data is critically important for a range of
disciplines, including medical image perception research, clinician
training programs, and computer vision algorithms, among many
other applications. Authentic medical image data, unfortunately,
is relatively scarce for many of these uses. Because of this,
researchers often collect their own data in nearby hospitals,
which limits the generalizabilty of the data and findings. Moreover,
even when larger datasets become available, they are of limited
use because of the necessary data processing procedures such
as de-identification, labeling, and categorizing, which requires
significant time and effort. Thus, in some applications, including
behavioral experiments on medical image perception, researchers
have used naive artificial medical images (e.g., shapes or textures
that are not realistic). These artificial medical images are easy
to generate and manipulate, but the lack of authenticity inevitably
raises questions about the applicability of the research to clinical
practice. Recently, with the great progress in Generative Adversarial
Networks (GAN), authentic images can be generated with high
quality. In this paper, we propose to use GAN to generate authentic
medical images for medical imaging studies. We also adopt a
controllable method to manipulate the generated image attributes
such that these images can satisfy any arbitrary experimenter goals,
tasks, or stimulus settings. We have tested the proposed method
on various medical image modalities, including mammogram, MRI,
CT, and skin cancer images. The generated authentic medical
images verify the success of the proposed method. The model
and generated images could be employed in any medical image
perception research. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.Percept.Imaging.2022.5.000502]

1. INTRODUCTION
Medical imaging has transformed modern medicine, al-
lowing clinicians to noninvasively examine and diagnose
patients with remarkable ease and speed. In recent years,
there have been dramatic advances in the field of medical
imaging technologies, ranging from MRI, CT, PET, pho-
tography, ultrasound, among many other techniques. These
improvements are astounding, but it is worth noting that ulti-
mately the data provided by these techniques requires critical
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human involvement in detection, selection, interpretation,
and diagnosis. The imaging techniques themselves are not
the only bottleneck for obtaining accurate diagnoses.

Fortunately, along with the technological developments,
there have also been concomitant advances in the application
and use of these technologies. For instance, there is a recent
surge in computer vision and medical image perception
research, that require artificial (algorithmic) and human
users respectively. In both machines and humans, there is a
great deal of potential to improve the use of medical imaging
in clinical practice. In addition to the more ambitious goals
of automated diagnoses, filtering, or cuing clinicians [34,
51, 68, 86], there are distinct and more pressing goals
of improving clinicians’ medical image perception and
decision-making [74, 78, 81] in the realms of training, error
detection, diagnostic support, among others [79].

To improve both machine and human medical image
perception, it is necessary to have sufficient source data.
Unfortunately, labeled and de-identified public medical
imaging data is scarce. Sometimes researchers resort to
collecting their own data from nearby hospitals, usually from
local areas that cannot represent the broader population.
Second, even if larger datasets are collected, the necessary
data processing procedures such as data de-identification,
labeling, and categorizing requires significant time and
effort. For instance, in certain medical imaging tasks, such
as lesion segmentation, in order to prepare the training data,
it requires experts to perform meticulous annotations that
are tedious and labor intensive [80]. Moreover, collected
medical images are specific to each individual patient and it
can be difficult to find specific images or image properties
that satisfy certain desired experimental configurations [52].
Of course, due to intricate tissue structures, manipulating
attributes of those collected medical images using traditional
image processing methods is difficult or impossible, at least
in a realistic manner.

The data scarcity problem has presented a major
challenge to research on medical image perception. At a
broad level, medical image perception research studies the
visual and cognitive processes that clinicians rely on to make
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Figure 1. Pipeline. Controllable medical image generation using the proposed GAN model. (a) Medical image generation: novel and authentic medical
images can be generated from random latent codes z . (b) Attribute manipulation: desired attributes can be assembled together to satisfy certain experimental
settings. Here, we use mammogram as an example medical modality. Real mammograms with tumor were utilized to train the proposed model. Our
proposed model can be easily adapted to other medical modalities, such as MRI, CT, and skin cancer images.

decisions. As in other domains of human factors, the goal of
understanding those mechanisms is to improve (i.e., guide,
cue, facilitate, speed, etc) clinician performance. Recently, in
many psychophysical experiments, artificial medical stimuli
have been employed [46, 52]. The artificial medical stimuli
are often composed of simple shapes or textures with some
form of noise background [46, 52, 77]. Related approaches
involve using real medical images but superimposing clearly
artificial ‘‘targets’’ [46, 52]. An advantage of these approaches
is that they are relatively easy to generate and control in a
precisemanner, which is important for studying the cognitive
and perceptual systems of clinicians [46, 52]. For example,
the image attributes and ‘‘targets’’ are easy to manipulate
such that researchers can perform shape morphing and
background replacement. This level of stimulus control is
necessary in perception research to study things like visual
search for lesions, visual recognition of lesions, inattentional
blindness, cognitive load and interference, etc. However,
those artificial medical images are obviously inauthentic,
completely unlike what clinicians routinely examine. Thus,
the results of these experiments fall invariably within a
shadow of a doubt about clinical applicability.

Therefore, generating authentic and easily controllable
medical images is critical for the entire field of medical image
perception research. Alleviating constraints is only recently
realistic, with the impressive development of deep learning
in computer vision. For example, Generative Adversarial
Network (GAN) is one of the promising models that have
achieved great success on image generation tasks. GAN
can generate high-quality authentic images with various
categories [41, 42, 60], such as faces, cars, landscapes,
and so on. Additionally, various methods can be applied
to manipulate the attributes of Generative Adversarial
Networks’ outputs [13, 54, 60].

In this paper, we utilize Generative Adversarial Network
(GAN) to generate authentic medical images (Figure 1(a)).
We also adopt a controllable approach to manipulate specific
attributes of the generated images (Fig. 1(b)). The proposed
method is tested on various medical image modalities such
as mammogram, MRI, CT, and skin cancer images. For
example, via controllable generation, we can create authentic
mammogramswith desired tumor and breast shapes.We also
recruited both expert clinicians and untrained participants
to discriminate the authenticity of each image (real versus
GAN generated) in an objective psychophysical experiment.
Finally, we investigate the perceptual loss which is utilized
in the controllable generation. Various experiments verify
the success of the proposed controllable medical image
generation model.

Contributions:We propose a framework for controllable
medical image generation with the following contributions.

• We propose to utilize Generative Adversarial Network
(GAN) to generate medical images and verify the
results on various medical image modalities such as
mammogram, MRI, CT, and skin cancer images.
• We adopt a controllable approach to manipulate the
attributes of the generated images in order to meet
certain experimental configurations.
• We compare traditional similarity measurements with
the perceptual metric in medical imaging.

Although a shorter conference version of this paper
appeared in [66], it was limited in scope and did not
extend the model to multiple medical image modalities.
This paper extends the model to MRI, CT, and skin
cancer images. Moreover, this paper compares traditional
similarity measurements with the perceptual metric in
medical imaging.
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2. RELATEDWORK
2.1 Convolutional Neural Networks
The idea of Convolutional Neural Networks (CNN) stem
from the discovery of the edge detector in cat’s striate
cortex [38]. Based on this finding, Fukushima [23] invented
the first simple hierarchical, multilayered artificial neural
network. After decades of development, LeCun et al. [49]
leveraged CNN for hand-written ZIP Code numbers recog-
nition and trained the network end-to-end via gradient
descent. This fully automatic image recognition model can
be applied to many image categories and types. The great
success is mainly attributed to the convolution operation,
which can reveal the latent semantic information of an
image, and the shared hierarchical kernels, which make
the convolution shift-invariant. During training, the loss
is computed based on specific metrics for certain tasks,
updating the model parameters while it back propagates
through the whole network.

However, the computation is heavy, which limits the
model’s capacity and ability for high-resolution images.
With the deployment of Graphical Processing Unit (GPU),
CNNs [33, 47, 71–73] have shown promise in computer
vision tasks, such as image classification [33], object
detection [27, 28, 64, 65], and object segmentation [32].
Recently, many medical imaging tasks have been utilizing
CNNs [22, 44, 70]. Compared to traditional image processing
methods, CNNs have much better performance with much
faster inference speed.

2.2 Generative Adversarial Networks
Generative Adversarial Networks are special Convolutional
Neural Networks, which consist of two networks, the
generator (G) and the discriminator (D). These two networks
are trained iteratively in an adversarial way where the
generator (G) generates fake but authentic images to fool the
discriminator and the discriminator (D) discriminates the
real and fake images [29]. Using this promising computa-
tionalmodel, high-quality imageswith various categories can
be generated, such as faces, cars, and landscapes [41, 42, 60].
However, the initial GAN model [29] cannot generate sharp
and recognizable images, and the training process is unstable.
Later work improved the performance of GAN in different
ways. Some papers focus on model architectures [13, 54,
58]. Others focus on improving the loss metrics and training
strategies [2, 9, 30].With these efforts, GAN training stability
has improved, and GAN can generate low-resolution images
with sufficient quality.

Of late, numerous approaches for high-resolution image
generation are also available. PGGAN [41] aims to train the
standard GAN from coarse to fine scale. The parameters for
low-resolution block are trained first. Then higher-resolution
blocks are added on gradually with the corresponding
parameters updated accordingly. Based on the same training
strategy, StyleGAN [42, 43] proposed to firstmap the original
latent space Z into the W space through a non-linear
mapping network. Then it is merged into the synthesis
network via adaptive instance normalization (AdaIN) at

each convolutional block [17, 36]. This improves StyleGAN
representations of scenes and details and allows it to
produce authentic high-resolution images. In this paper,
we adopt StyleGAN as our backbone for medical images
generation.Moreover, a controllable approach is also utilized
to manipulate the attributes of the generated images.

In medical image applications, [22] DCGAN [61] and
ACGAN[58]were utilized to generateCT liver lesion patches
and boosted the liver lesion classification performance. Han
et al. [31] deployed WGAN [30] to generate MR images for
data augmentation andphysician training.Nie et al. [57] used
GAN to predict CT images from MR images. Cao et al. [10]
proposed an Auto-GAN to synthesize missing modality for
medical images. Moreover, GAN has been widely used for
skin cancer image generation and purification [5–7, 26].
Our approach is different from aforementioned methods.
In addition to purely generating new samples as GANs
traditionally do, our method can also edit specific images via
the encoder of our model.

2.3 Perceptual Loss
CNN features have already been utilized for calculating
similarity for years. Ref. [1] proposed to use pre-trained
AlexNet features for image quality measurement. Perceptual
loss, which is also based on CNN features, was first
proposed in Ref. [40] for style transfer [25] and super
resolution tasks. Both are ill-posed problems. For style
transfer, there is no absolute ground truth image for
reference. For image super resolution, one low-resolution
image can have many corresponding high-resolution images
which can be down-sampled to the same low-resolution
image. Thus, per-pixel metric is no longer suitable since
semantic similarity matters. Recently, traditional similarity
metrics, such as Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR), are found to be
inconsistent with human perception, and a perceptual metric
has been utilized to measure the semantic similarity in many
papers [37, 50, 87, 89]. In this paper, we use perceptual loss
to regularize the encoder training and guide the latent code
optimization in the encoding procedure.

3. METHOD
Here, we adapt the Generative Adversarial Network for
medical image generation. In order to manipulate the image
attributes, an encoder is added to encode certain image
attributes into the latent code z which is the input of theGAN
generator.

Our proposed model is composed of two parts. The first
part is the GAN which involves the generator (G) and the
discriminator (D). The generator (G) will generate authentic
(fake) images from the latent codes z , and try to fool the
discriminator (D) during training. The discriminator (D)
will discriminate whether the image is real (i.e. sampled from
real images) or fake (i.e. generated from the generator), and
try to beat the generator by distinguishing the fake images
from the real ones. The second part of the model is the
encoder (E), which can encode image attributes into the
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Figure 2. Architecture of proposed method. The architecture contains three sub-networks, the encoder (E), the generator (G), and the discriminator (D). The
training has two phases. In the first phase, the generator and discriminator will be trained first without the encoder (E) via adversarial loss Ladversarial. In the
second phase, the generator (G) will be fixed. The encoder (E) and discriminator (D) will be trained adversarially via the reconstruction loss Lreconstruction,
the perceptual loss Lperceptual, and the adversarial loss Ladversarial. The dashed arrows indicate how to compute the corresponding loss metrics.

latent code z . This latent code can then be utilized to generate
the image through the generator. Therefore, it can allow
us to manipulate the generated image by manipulating the
latent code through the encoder. The architecture is shown
in Figure 2.

While training, the GAN part is first trained pro-
gressively [42] via adversarial loss LAdversarial. The training
process can be formulated as

min
G

max
D

Ex∼pdata(x)[logD(x)] +Ez∼q(z)[log(1−D(G(z)))],
(1)

where pdata(x) and q(z) indicate the real data distribution
and the latent space distribution respectively, x is the sampled
real image, z is the sampled latent code.

Then, we train the encoder part. After training the GAN
part, the generator (G) is fixed. While training the encoder
network, traditional methods [3] regularize the encoder on
the latent space, encouraging the encoder to encode the
same latent codes for the corresponding generated images
regardless of the reconstructed images. This method can
degrade the reconstruction quality. Instead, we adopt the
idea from In-domain GAN inversion [88], where the regu-
larization of the encoder is on the image space. In particular,
the encoded vector is passed into the generator (G) again
and the regularization is on the reconstructed image. The L2
reconstruction loss LReconstruction and the perceptual loss [40]
LPerceptual are utilized for the regularization. Additionally,
adversarial loss LAdversarial is also utilized to guarantee that
the reconstructed image looks authentic. The whole process
can be summarized as follows

min
E
‖x −G(E(x))‖2+ λ1‖F(x)− F(G(E(x)))‖2

− λ2Ex∼pdata(x)[logD(G(E(x)))], (2)
min
D

Ex∼pdata(x)[logD(G(E(x)))] −Ex∼pdata(x)[logD(x)]

+
γ

2
Ex∼pdata(x)[‖∇xD(x)‖

2
2], (3)

where pdata(x) indicates the real data distribution, x is the
real image, E represents the encoder, F represents the VGG
feature extraction [71], and λ1, λ2 and γ are weights for
the perceptual loss, the adversarial loss, and the gradient
penalty [30].

Since the inverse mapping via the encoder (E) will
not always be perfect, in order to get the optimal inverse
latent code, we apply another optimization on the latent
code. This optimization will update the latent code based
on the reconstruction loss and the perceptual loss within the
neighborhood of the original encoded vector (the encoder
regularization). The optimization process can be described
as below

z inv = min
z
‖x −G(E(x))‖2+ λ3‖F(x)− F(G(z))‖2
+ λ4‖z −E(G(z))‖2, (4)

where z inv is the optimized inverse code, λ3 and λ4 are
weights for the perceptual loss, and the code reconstruction
loss (i.e., the encoder regularization). This optimization
metric can be computed using the whole image region (for
image reconstruction) or the region of interest (for image
manipulation).

3.1 Medical Image Synthesis
In general, informative images lie on a manifold. Through
the GAN training, the generator (G) learns a transformation
from the latent space to the image space, imitating the real
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Figure 3. Attribute manipulation pipeline. Firstly, the desired image attributes are combined by merging image patches that contain those attributes. Then,
the corresponding latent code is produced by the encoder. The generator reconstructs the image with desired attributes. Finally, the desired image can be
obtained after the final optimization.

image manifold of the training dataset. Thus, we can utilize
this learned transformation to generate images authentic to
the real images. First, the latent code z will be sampled
from the latent space. Then, the output image x = G(z) is
produced by the generator.

Using the learned transformation, we can also generate
similar medical images. As a manifold, the nearby images
on the manifold are similar to each other. Therefore, we
can sample a series of latent codes zi on a closed path C ,
then passing these latent codes into the generator (G), we
can obtain a series of gradually and continuously morphing
images xi:

xi =G(zi), zi ∼ C. (5)

3.2 Attribute Manipulation
While training the encoder (E), without the discriminator
(D), the encoder and the generator form an autoencoder [53,
63]. The training encourages the encoder to embed useful
image attributes into the latent code. Since the generator is
pretrained under the GAN, the generator has learned how
to reconstruct the embedded image attributes with proper
tissue context.

In order tomanipulate the image attributes, we first need
to combine the desired image attributes into one assembled
image x ′. The combination can be achieved by merging
image patches Pi which contain the desired image attributes:

x ′ =
n⋃

i=1

Pi. (6)

Then this assembled image x ′ will be encoded by the
encoder, z ′ = E(x ′), obtaining the corresponding image
attributes latent code z ′. The generator will finally recon-
struct those image attributes with proper tissue texture,
xreconstruct =G(z ′).

Since the image with all desired attributes may not exist
on the image manifold, the reconstructed image may not
have the exact desired attributes as we designed. The final
optimization (shown in Eq. (4)) can be conducted on the
region where the attributes need to be accurate. The pipeline
for attribute manipulation is shown in Figure 3.

4. EXPERIMENTS AND RESULTS
4.1 Implementation Details
For the Generative Adversarial Network (GAN), we adopt
StyleGAN [42]. The training is progressive. Starting from

8 × 8, the latter resolution blocks are added progressively
after the previous blocks finish training. The output image
resolution is 256 × 256. While training the encoder, the
generator is fixed. Only the encoder and discriminator
parameters are updated. For the perceptual loss, VGG [71]
conv4_3 feature layer is utilized. As for the hyperparameters,
λ1 = 0.00005, λ2 = 0.1, λ3 = 0.00005, λ4 = 2, and γ = 10.
We use the Adam optimizer [45] with β1 = 0.9 and
β2 = 0.99. The learning rate is set to 0.0001. Pytorch is
utilized for coding.

For mammogram images, we use DDSM [8] dataset
which contains 2, 620 normal, benign, and malignant cases.
Only the benign andmalignant cases are utilized for training.
For MRI images, we utilize fastMRI [84] multi-coil dataset
which contains 7135 images. For CT images, DeepLe-
sion [83] dataset is used. We utilize the abdomen image
dataset which contains 14601 images. For skin cancer im-
ages, we use images from ISIC Archive (https://www.isic-arc
hive.com/#!/topWithHeader/wideContentTop/main)which
contains 69445 images in total.

4.2 GAN Generated Results
For different medical image modalities, we train the whole
network separately using corresponding datasets. After the
GANpart has been trained, we randomly sample latent codes
z and pass them to the generator. The generated results
for Mammogram, MRI, CT, and Skin Cancer are shown
in Figure 4. Compared to the real samples on the left, the
generated samples on the right appear very similar, and
this is seen across different medical image modalities. It is
clear that the generator has learned the semantic statistics of
the training dataset for different medical image modalities.
The generator can generate authentic tissue texture, tissue
distribution, tissue shapes, and color distributions.Moreover,
the generator can not only reconstruct the original medical
images, but also it can produce novel and authentic medical
images which do not actually exist in the real world.

Since the GAN training learns the manifold of the train-
ing dataset, we can also generate gradually and continuously
morphing medical images for certain experiments. First, the
latent codes need to be sampled from a closed path in the
latent space. To do so, we randomly pick three anchor points
in the latent space and calculate the interpolations between
each pair of them. Then, passing those codes to the generator,
we can obtain the gradually and continuously morphing
medical images. The result is shown in Figure 5. Due to the
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Figure 4. GAN generated results. The generated results for different medical image modalities. Comparing the real samples to the generated samples,
it is clear that the generator has learned how to imitate tissue texture, tissue distribution, tissue shapes, and color distribution. The generator can produce
authentic images (see below for psychophysical results confirming this).

space limit, we only show three interpolations between each
pair; arbitrarily fine grained interpolations can be created
between any number of pairs.

4.3 Attribute Manipulation
Our proposedmodel can generate desiredmedical images by
manipulating the image attributes. For illustration, we show
howwe generatemammogramswith the desired lesion patch
and desired breast shapes. The results are shown in Figure 6.

First, we combine the desired image attributes, i.e. the
lesion patch (Fig. 6A) and shape templates (Fig. 6B), by
merging the lesion patch and shape templates directly. Then
we encode these intermediate combined images (Fig. 6C)
using the encoder and pass the codes to the generator.
The reconstructed images from the generator are shown in
Fig. 6(E) (without optimization). It is clear that the shapes
are already the same as the shape templates and the overall
texture is authentic. But the desired lesion texture is not
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Figure 5. Interpolation results. Here, we show a mammogram loop gradually changing among three anchor images. The mammograms between two
of the anchor images are generated by passing the interpolated codes of those two anchor images to the trained generator. Any number of interpolated
images between any pair of anchors can be created.

Figure 6. Attribute manipulation results. The desired image attributes are combined by merging the corresponding image patches (in Column A and
B) directly. Then, the encoder will encode the manipulated image attributes, and the generator will produce the output correspondingly. After the final
optimization, it is clear that the proposed method can generate the mammograms with the desired lesion texture and breast shape (Column F), compared
to the results from the traditional image blending method (Column D) and the proposed method without the final optimization (Column E).

maintained. After the last step of optimization over the
lesion patch, as it is shown in Fig. 6(F), the lesion texture
is rendered. We also compare the results with the ones
produced by a traditional image blending method. As it
is shown in Fig. 6(D), the transition region between the

lesion texture and the shape template background is not

natural. Our proposed method can maintain both the breast

shape and the lesion texture while generating authentic tissue

texture.
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4.4 Human Evaluation
To verify the authenticity of the generated images for
different medical image modalities, we conducted an online
psychophysical experiment, recruiting both untrained par-
ticipants (i.e. no knowledge of medical imaging) and experts
(e.g. radiologists or practicing clinicians who routinely read
radiographs).

4.4.1 Participants
Six untrained observers (3 females, age range: 22–25) and
seven experts (3 females, age range: 32–39) participated in
the mammogram online survey. Two experts were excluded
from the mammogram online survey (one dropped out
and the other gave the same response on every trial). Five
untrained observers (3 females, age range: 23–25) and seven
experts (3 females, age range: 28–40) participated in the CT
online survey.

All subjects reported to have normal or corrected-
to-normal vision. Participants voluntarily participated and
were offered $15 per hour as optional compensation. In
our experience, radiologists typically refuse this modest
compensation. The experiments were approved by the
Institutional Review Board at the University of California,
Berkeley. Participants provided informed consent.

4.4.2 Stimuli
For the mammogram online survey, 50 real mammograms
and 50 fake (model generated) images were included. For the
CT online survey, 50 real CT images and 50 fake CT images
were presented. All the images were randomly selected from
the corresponding data pools.

4.4.3 Procedure
The task was to rate each image from 0 (fake/generated
image) to 10 (real image) in the data pool. Each individual
imagewas shown for 5 s, and observerswere asked to respond
as quickly as possible. The experiment was self-paced, so
observers viewed the stimuli as long as they wanted (up to
5 s), and they did not have time limit for giving responses. To
ensure that participants did not randomly guess (or lapse),
a small number of repetitive trials were also included in
the online survey to establish a baseline test-retest reliability
estimate. We compute the similarity among those repetitive
trials.

4.4.4 Results
The results for mammogram and CT images in terms of the
Receiver Operating Characteristic (ROC) curves are shown
in Figure 7. For both untrained participants and radiologists,
in the context of mammogram and CT images, their
performance curves are near the diagonal (i.e. the chance
level performance region), indicating that the generated
medical images appeared authentic. The area under the curve
(AUC) can also confirm the chance-level performance. The
mean AUCs are 0.52 (p= 0.395, permutation test) and 0.60
(p= 0.126, permutation test) for untrained participants and
radiologists respectively in mammogram online survey. The

mean AUCs are 0.42 (p = 0.888, permutation test) and
0.42 (p= 0.844, permutation test) for untrained participants
and radiologists respectively in CT online survey. As shown
in the permutation tests, the large p-values indicate that
performance is not statistically different from random
performance.

Although the observers were not able to accurately
discriminate real from fake images, this does not mean that
observers randomly responded or failed to pay attention
to the task. To confirm this, we calculated the test-retest
reliability of each observers responses for repeated images.
From the small number of repeated trials, the average
test-retest similarity is 0.65, indicating ‘‘good’’ consistency.
For a near-threshold task, the noise ceiling is not 1, and
0.65 is ‘‘good’’ in the sense that it is statistically reliable and
significant [14, 20, 21]. The similarity is computed using
Sokal-Michene metric [85]. It is noteworthy that observers
can have high test-retest reliability despite low sensitivity
(low AUC). The test-retest reliability indicates that observers
tended to make the same judgments in repeated trials:
they consistently confused some real (fake) images as being
fake (real). This resulted in low sensitivity (low AUC) but
consistent responses (‘‘good’’ test-retest reliability).

We have appended the results of MRI and Skin
Cancer images in the Appendix B to avoid redundancy.
Results indicate that the generated medical images appeared
authentic.

4.4.5 Limitations
Online studies have a range of potential limitations [4].
However, it has been well documented in the literature that
online studies can reveal even very subtle psychophysical
phenomena reliably, and these methods are now estab-
lished [15, 62, 67]. In our online experiment, variations in
the environment or monitor settings that might occur could
add noise to the data, but they wouldn’t generate the high test
retest reliability we found, or the consistent pattern of results.
The growing literature on internet-based psychophysics is
consistent with this [67]. Moreover, we believe that our data
adds a unique perspective on this issue: the advantages of
online experiments are pronounced in cases where subjects
are rare and/or very expensive to recruit, as is the case
with the experienced andhighly trained radiologist observers
reported here. Future studies should consider online data
collection for medical image perception tasks, in order to
broaden representation, diversity, and improve sample sizes.

Another consideration with the experiments here is
the images were viewed for a maximum of 5 s. The
experiment was self-paced, and the participants could view
the images as long as needed to make a choice, but
this was limited to 5 s maximum viewing. There are
both theoretical and empirical reasons that 5 s is likely
to be sufficient for the task (see Appendix C), but it is
conceivable that performance could change if observers
were forced to view the images for prolonged periods of
time. Future experiments should therefore examine the
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Figure 7. Human evaluation results. Participant performance is shown
in the Receiver Operating Characteristic (ROC) curves. It is clear that
their performance is near chance level (curves near the diagonal region),
indicating that the generated medical images are authentic. Here,
P1− PN and R1− RN represent different untrained observers and experts
in corresponding experiments.

temporal integration of the visual processes that contribute
to discrimination of near-metameric medical images.

Table I. Similarity Measurements for Mammogram Images.

Image 1 Image 2

SSIM↑ 0.93 0.89
PSNR (dB)↑ 38.99 30.61
Perceptual↓ 0.96 0.64

Table II. Similarity Measurements for MRI Images.

Image 1 Image 2

SSIM↑ 0.84 0.68
PSNR (dB)↑ 34.42 33.01
Perceptual↓ 3.89 2.96

Table III. Similarity Measurements for CT Images.

Image 1 Image 2

SSIM↑ 0.54 0.24
PSNR (dB)↑ 31.04 29.91
Perceptual↓ 27.77 7.42

4.5 Perceptual Loss
Currently, perceptual loss is utilized as a similarity metric in
many computer vision tasks [37, 50, 87, 89]. In this section,
we investigate the perceptual loss as a similarity metric in
medical imaging domain. We compare its results with the
results of Structural Similarity Index Measure (SSIM) and
Peak Signal-to-Noise Ratio (PSNR), which are two common
similarity metrics.

In the experiment, we utilize random samples from
mammogram, MRI, CT, and skin cancer images as reference
images (256 × 256). First, we apply traditional image
distortions on those reference images, such as Gaussian blur,
contrast distortion, geometric distortion, spatial shifting,
and spatial rotation. Then, we calculate the similarity
measurements for different outputs from traditional image
distortions with respect to the reference images. Detailed
computation algorithms can be found in Appendix A.

For quantitative comparison, we show the similarity
measurement results in the following tables. For the SSIM
and PSNR metrics, the larger the measurement is, the more
similar it is between the measured image and the reference
image (indicating by ↑). For perceptual metric, the smaller
the measurement is, the more similar it is between the
measured image and the reference image (indicating by ↓).
Tables I, II, III and IV show the similarity measurements for
mammogram,MRI, CT, and skin cancer images respectively.

For qualitative comparison, we compare the similarity
measurement between Gaussian blur outputs (Figure 8
Image 1 Column) and the outputs from the rest of the
traditional image distortions (Fig. 8 Image 2 Column). We
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Table IV. Similarity Measurements for Skin Cancer Images.

Image 1 Image 2

SSIM↑ 0.87 0.74
PSNR (dB)↑ 36.26 31.58
Perceptual↓ 3.15 1.99

first asked human participants to give their choices of the
image, which was more similar to the reference image. The
results are labeled with green checkmarks as shown in Fig. 8.
Then, according to the similarity measurements, we select
the images which are preferred by SSIM/PSNR or perceptual
loss metric. It is clear that SSIM and PSNR do not conform
to human judgements. However, the similarity decisions
from the perceptual loss metric are consistent with human
judgements. Thus, the perceptual metric is more suitable for
the similarity measurement in medical imaging area.

5. DISCUSSION
In this paper, we utilize Generative Adversarial Networks
for medical image generation. Our results demonstrate
generalizability of the proposed approach across different
modalities, such as mammogram, MRI, CT, and skin cancer
images. We also manipulate the generated images such that
they contain desired attributes. Compared to traditional
image blending methods which mainly edit locally, our
proposed method not only embeds the desired image
attributes but also edits the surrounding tissue texture
accordingly to make the overall tissue texture distribution
reasonable. Through adversarial training, the GAN model
here learns an estimated manifold which is similar to the
image manifold of the training dataset. This estimated
manifold well-characterizes the semantic statistics of the
training dataset, such as the tissue texture, tissue distribution,
tissue shapes, and color distribution. Thus, once the contents
of certain regions are altered, the GAN knows how to edit
the surrounding region tomatch the semantic statistics of the
training dataset, producing authentic manipulated images.

Our model can generate a vast range of possible stimuli
that accomplish a range of specific and controllable goals.
For example, the model can output specific body part
shapes, lesion types and locations, background and tissue
textures, etc. Additionally, ourmodel is capable of generating
morphed medical images, gradually and continuously. In
certain medical image perception tasks, such as visual
search [16, 82], visual detection and recognition [56], and
decision making [75, 76], this kind of controllable medical
image stimuli can be very useful. The intrinsic problem using
real medical image data is that individual differences are
substantial: it is not realistic to collect gradually morphing
medical images from real medical image data (e.g., finding a
sequence of naturally occurring tumors that smoothlymorph
between shapes or textures is highly unlikely). Using our
proposed method, we can generate any number of authentic
medical image stimuli that gradually morph. Moreover, all

the images are generated via interpolation, which allows us
to control the grain of the morphing.

For the perceptual loss metric, researchers [87] have
determined that traditional similarity metrics, such as SSIM
and PSNR, are not consistent with human perception of
typical natural images. But deep neural network based
perceptual metrics can, surprisingly, agree with human
judgement. Through experiments, we arrive at the same
conclusion in medical imaging domain as well; perceptual
metrics preferred medical images and are more perceptually
similar to the reference images compared to traditional
similarity metrics. Thus, perceptual loss metric provides an
important measurement of similarity in medical imaging.
Using perceptual loss metric as the similarity measurement,
we can also generate metamers for any specific medical
image. Themetamers are a cluster of perceptually similar im-
ages which have been widely used in perception researches.

Medical image perception research is a rapidly growing
field. Typical approaches directly or indirectly assume that
computer vision will be an alternative to clinical practice.
Our study introduces an additional but very different
perspective, which is to use computer vision to improve
research on medical image perception. Clinicians will not
be replaced anytime soon (if ever). To help clinicians
make better judgments, we need to understand clinician
perception, cognition, and decision. That requires having
stimuli (datasets) that are simultaneously realistic (from
the perspective of clinicians) and also controllable. Without
this, it will be impossible to make the connection between
the cognitive mechanisms that clinicians possess, and their
diagnostic success in their practice.

Interestingly, the model and morphing approach we
present here could be readily extended to three-dimensional
volumetric images. Volumetric medical imaging is now
gaining popularity as a standard practice in clinical setttings.
The GAN model and morphing approach can be combined
in future work to flexibly create volumetric data sets.
Moreover, the GAN model is currently unconditioned. We
can also change it to conditional GAN model such that
changing certain part of the latent code (not through the
encoder) can directly modify corresponding attributes of the
output image.

6. CONCLUSION
In this paper, we propose usage of Generative Adversarial
Network (GAN) for medical image generation. We tested
our method on various medical image modalities such as
mammogram, MRI, CT, and skin cancer images. Human
evaluations verify the success of our method. We also adopt
a controllable approach to manipulate the attributes of the
generated images in order to meet certain experimental
configurations. In the experiments, we successfully generate
mammograms with the desired lesion texture and breast
shape. The same approach can also be applied to MRI, CT,
skin cancer images, and other medical imaging modalities.
Finally, we compare traditional similarity measurements
with the perceptual metric in medical imaging. We find that
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Figure 8. Which image is more similar to the reference? Image 1 Column shows the distortion by Gaussian blur. Image 2 Column shows the distortions
by contrast distortion, geometric distortion, spatial shifting, and spatial rotation respectively. The human judgements are marked using green ticks. It is clear
that SSIM/PSNR results do not conform to human judgements, while perceptual metric do.

the perceptual metric performs better than the traditional
similarity metrics such as SSIM and PSNR.

APPENDIX A. SIMILARITYMEASUREMENTS
A.1 SSIM
The Structural Similarity IndexMeasure (SSIM) is computed
over various patches of an image. The measure between two
patches x and y of the same size is:

SSIM(x, y)=
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ

2
y + c1)(σ 2

x + σ
2
y + c2)

, (A1)

where µx is the average of x , µy is the average of y , σ 2
x

is the variance of x , σ 2
y is the variance of y , σxy is the

covariance of x and y , c1 = (k1L)2 and c2 = (k2L)2 are two

variables to stabilize the division with weak denominator
with L= 2#bits per pixel

− 1, k1 = 0.01, and k2 = 0.03.

A.2 PSNR
Given am× n reference image I and its distorted version K ,
the PSNR is defined as:

PSNR= 20 log10(MAXI )− 10 log10(MSE), (A2)

where MAXI is 255 for 8-bit images, and the MSE is
computed as:

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K (i, j)]2. (A3)
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A.3 Perceptual loss
We utilize the same perceptual loss as [40]. The loss network
is VGG-16 [71]. For the reference image r and the distorted
image x , the perceptual loss is defined as:

L(x, r)= λc l
φ,j
feat(x, r)+ λsl

φ,J
style(x, r), (A4)

where λc and λs are scalars. In the experiment, we set λc = 1
and λs = 1× 105. φ represents the VGG network. lφ,jfeat(x, r)
is the feature reconstruction loss. Let φj(x) be the activation
of the jth layer of the networkφ with a shape ofCj×Hj×Wj.
The feature reconstruction loss is defined as:

lφ,jfeat(x, r)=
1

CjHjWj
‖φj(x)−φj(r)‖22. (A5)

The style reconstruction loss is defined as:

lφ,Jstyle(x, r)= ‖G
φ
j (x)−Gφj (r)‖

2
F , (A6)

whereGφj (x) is the Grammatrix with a shape of Cj×Cj. The
elements of the Gram matrix can be computed as:

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′ (A7)

APPENDIX B. HUMAN EVALUATIONOF
GENERATEDMRI AND SKIN CANCER IMAGES
We also collected human evaluation experiment data for
MRI and Skin Cancer images. For the MRI experiment,
four observers (1 expert, age range: 25–39) participated. For
the Skin Cancer experiment, five observers (1 expert, age
range: 20–39) participated. Unlike CT and mammogram
image experiments, we could not recruit sufficient experts
for MRI and Skin Cancer online surveys. All experiments
were approved by the Institutional Review Board at UC
Berkeley and the participants provided informed consent.
Stimuli included 50 real and 50 corresponding fake images.
All participants followed the same experimental procedures
as described in Section 4.4.3.

The results for MRI and Skin Cancer images in terms
of the Receiver Operating Characteristic (ROC) curves are
shown in Figure B.1. The mean area under the curves
(AUCs) are 0.57 (p = 0.241, permutation test) and 0.62
(p = 0.123, permutation test) for MRI and Skin Cancer
respectively. Although we did not have experts for theseMRI
and Dermatology tests, we did have one trained radiologist
participate and their data echoes that of untrained observers,
all of which are consistent with the CT and mammogram
data.

APPENDIX C. STIMULUS DURATION
CONSIDERATIONS
There are both empirical and theoretical reasons for limiting
the display to 5 s, and the empirical results confirm that 5 s
was more than sufficient for observers to reach a reliable
decision.

Figure B.1. Human evaluation results for MRI and Skin Cancer images.
Participant performance is shown in the Receiver Operating Characteristic
(ROC) curves. It is clear that their performance is near chance level (curves
near the diagonal region), indicating that the generated medical images
were authentic. Here, P1− PN represent different untrained observers and
experts in corresponding experiments.

Firstly, previous research has demonstrated that radiolo-
gists can reliably discriminate radiographs within 1 s [11, 12,
18, 19, 24, 35, 39, 48, 55, 59]. In our experiment, we provide
far more time than 1 s. Moreover, in self paced studies with
static radiographs, radiologists often spend less than 5 s [69].

Secondly, our results show that accuracy does not vary
with decision time. The decision time is reported as the
time from the first viewing of the page to the final ‘‘submit’’
click by the observer. This is a conservative estimate of
the decision duration. The relation between the error and
decision time is shown in Figure C.1. The fitted line reveals
that error and decision time are not correlated; more time
did not make observers more accurate. Moreover, in this
experiment, 60.0% of the decisions weremade before stimuli
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Figure C.1. Error-Timing Relation. The scatter plot shows the raw data
of participants’ error and their decision duration. We fit a linear function
to reveal the relation between them. It is clear that the error and their
decision time are not correlated. The bottom density distribution represents
the distribution of participants’ decision time. The orange line indicates
the time point when stimuli disappeared. In this experiment, 60.0% of the
decisions were made before the stimuli disappeared.

disappeared. Notably, the peak of response density does not
occur at the 5 s boundary. It occurs around 2 s, which
indicates that the 5 s stimulus duration limit does not induce
pressure on participants’ decision.

Finally, the significant test-retest reliability demon-
strates that observers were consistent in their responses. If
exposure duration limited performance, it would add noise
and that test-retest reliability would be low [18].

Together, all of these considerations suggest that the
duration of image interpretation was probably not the
limiting factor. From the examples here, it appears that
scrutinizing the real and generated images for more than
a few seconds does not make them appear more or less
similar. This hints that the metameric quality of the images
is not due to a time constraint. Nevertheless, we did
not force observers to scrutinize the images for more
than 5 s, and it is conceivable that forcing an extended
viewing of the images could improve performance. For this
reason, it will be valuable in future studies to examine the
temporal integration of the visual processes that contribute
to discrimination of near-metameric medical images.
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